GEOMETRY UNIT 10

11-1: Area of Rectangles and Squares

WARM-UP

-Use the graph sheet and shapes to estimate the area of each shape. Count each square as one unit.

AREA OF RECTANGLES

-Content Objective: Students will be able to use postulates and theorems to find the area of rectangles and squares.
-Language Objective: Students will be able to identify polygons and their appropriate area formulas.

AREA OF A RECTANGLE

- Theorem 11-1: The area of a rectangle equals the product of its base and height.

Equation: $A=b h$

POSTULATES

- Postulate 17: The area of a square is the square of the length of a side.

Equation: $A=s^{2}$

- Postulate 18: If two figures are congruent, then they have the same area.

POSTULATES

- Postulate 19: The area of a region is the sum of the areas of its non-overlapping parts.

Area of $A B C D=$ Area $I+$ Area $I I+$ Area $I I I$

PRACTICE

- Given that consecutive sides of the figures are perpendicular. Find the area of each figure.

Solution:
Area of a Square

$$
\begin{gathered}
A=(4 \sqrt{2})^{2} \\
\boldsymbol{A}=\mathbf{1 6} \times \mathbf{2}=\mathbf{3 2}
\end{gathered}
$$

PRACTICE

- Given that consecutive sides of the figures are perpendicular. Find the area of each figure.

Solution:
Area of a Rectangle

$$
\begin{gathered}
A=6 \times 8 \\
\boldsymbol{A}=\mathbf{4 8}
\end{gathered}
$$

PRACTICE

- Given that consecutive sides of the figures are perpendicular. Find the area of each figure.

Solution:

Separate the Areas
$A=30+30+35+10+25$

$$
A=130
$$

PRACTICE

- The table below outlines the parts of a rectangle. Complete the Table.

b	8 cm	4 cm	12 m	$\mathbf{1 1}$	$3 \sqrt{2}$	$4 \sqrt{2}$	$5 \sqrt{3}$	$x+3$
h	3 cm	1.2 cm	$\mathbf{3}$	5 cm	2	$\sqrt{2}$	$2 \sqrt{3}$	x
A	$\mathbf{2 4}$	$\mathbf{4 . 8}$	$36 \mathrm{~m}^{2}$	$55 \mathrm{~cm}^{2}$	$6 \sqrt{2}$	8	30	x^{2} $+3 x$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
1.)

Solution:

Area of a Rectangle

$$
\begin{gathered}
A=5 \times 12 \\
\boldsymbol{A}=\mathbf{6 0}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
2.)

Solution:
Area of a Square

$$
\begin{aligned}
& A=5^{2} \\
& \boldsymbol{A}=\mathbf{2 5}
\end{aligned}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
3.)

Solution:
Separate the Areas

$$
\begin{gathered}
A=2 y^{2}+24 y^{2}+8 y^{2} \\
\boldsymbol{A}=\mathbf{3 4} \boldsymbol{y}^{\mathbf{2}}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
4.)

Area of a Rectangle

$$
\begin{gathered}
A=(x+4)(x-5) \\
A=x^{2}-\boldsymbol{x}+\mathbf{2 0}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
5.)

9
Solution:
Area of a Rectangle

$$
\begin{gathered}
A=9 \times 4.4 \\
\boldsymbol{A}=\mathbf{3 9 . 6}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
6.)

Solution:

Separate the Areas

$$
\begin{gathered}
A=32+24+16+8 \\
\boldsymbol{A}=\mathbf{8 0}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
7.)

Area of a Rectangle

$$
\begin{gathered}
A=9 \times 9 \sqrt{3} \\
\boldsymbol{A}=\mathbf{8 1} \sqrt{\mathbf{3}}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
8.)

Solution:
Separate the Areas

$$
\begin{gathered}
A=48+54 \\
\boldsymbol{A}=\mathbf{1 0 2}
\end{gathered}
$$

GROUP PRACTICE

- Find the area for the following diagrams in your groups.
9.)

PRACTICE

- The table below outlines the parts of a rectangle. Complete the Table.

6	9 cm	40 cm	16 cm	$x+5$	$a+3$	$k+7$	x	$y^{2}+7 y$
h	4 cm	10 cm	3	x	a-3	4	$\begin{aligned} & x \\ & +3 \end{aligned}$	x
A	36	400	$48 \mathrm{~cm}^{2}$	$\begin{aligned} & \hline x^{2} \\ & +5 x \end{aligned}$	$\begin{aligned} & a^{2} \\ & -9 \end{aligned}$	$4 \mathrm{k}+28$	$x^{2}+3 x$	$\begin{array}{l\|} \hline x y^{2} \\ +7 x y \end{array}$

