Geometiry Unit 10

80 \cos

11-2: Areas of Parallelograms, Triangles, and Rhombuses

Warm-up

s We are going to finish up the examples from yesterday.
sRefer to the 11-1 Presentation for solutions to those problems.

MOIC Areas

so Content Objective: Students will be able to use postulates and theorems to find the area of parallelograms, triangles, and rhombuses.
s Language Objective: Students will be able to identify polygons and their appropriate area formulas.

Refer to Number 3 on the 1-1 Intiroduction Sheet

Estimate the are using square units. Explain how you found it quickly (i.e. not just "counting squares")
 Just take a Guess.

No right or wrong with this one.

Area of a Parallelogram

so Theorem 11-2: The area of a parallelogram equals the product of a base and the height to that base.

Equation: $A=b h$

Refer to Number 8 on the 1-1 Introduction Sheet

Estimate the are using square units. Explain how you found it quickly (i.e. not just "counting squares")

Area of a Triangle

so Theorem 11-3: The area of a triangle equals half the product of a base and the height to that base.

Equation: $A=\frac{1}{2} b h$

Refer to Number 5 on the 1-1 Intiroduction Sheet

Estimate the are using square units. Explain how you found it quickly (i.e. not just "counting squares")

Area of a Rhombus

so Theorem 11-4: The area of a Rhombus equals half the product of its diagonals.

Equation: $\frac{1}{2} d_{1} d_{2}$

Practice

so Find the area of each figure.

Solution:
Area of a Parallelogram

$$
\begin{gathered}
A=6 \times 1.5 \sqrt{3} \\
\boldsymbol{A}=\mathbf{9} \sqrt{\mathbf{3}}
\end{gathered}
$$

Practice

so Find the area of each figure.

Solution:

Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(6 \times 4) \\
A=\frac{1}{2} \times 24 \\
\boldsymbol{A}=\mathbf{1 2}
\end{gathered}
$$

Practice

s Find the area of each figure.

Solution:

Area of a Rhombus

$$
\begin{gathered}
A=\frac{1}{2}(8 \times 6) \\
A=\frac{1}{2} \times 48 \\
\boldsymbol{A}=\mathbf{2 4}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.

Solution:

Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(4 \times 2 \sqrt{3}) \\
A=\frac{1}{2} \times 8 \sqrt{3} \\
A=4 \sqrt{3}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.
2.)

Solution:

Area of a Rhombus

$$
\begin{gathered}
A=\frac{1}{2}(4 \times 10) \\
A=\frac{1}{2} \times 40 \\
A=\mathbf{2 0}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups. 3.)

Solution:

Separate the Areas

$$
\begin{gathered}
A=\frac{1}{2}(8 \times 3)+(8 \times 4) \\
A=12+32 \\
\boldsymbol{A}=44
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.
4.)

Solution:

Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(12 \times 5) \\
A=\frac{1}{2} \times 60 \\
\boldsymbol{A}=\mathbf{3 0}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.

Solution:

Separate the Areas

$$
\begin{gathered}
A=\frac{1}{2}(12 \times 5)+\frac{1}{2}(12 \times 9) \\
A=30+54 \\
\boldsymbol{A}=\mathbf{8 4}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.

$$
\begin{gathered}
A=(12 \times 4)+\left(6^{2}\right) \\
A=48+36 \\
\boldsymbol{A}=\mathbf{8 4}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.
7.)

Solution:
Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(7 \sqrt{2} \times 7 \sqrt{2}) \\
A=\frac{1}{2} \times 28 \\
A=14
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups.
8.)

Solution:

Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(8 \sqrt{3} \times 8) \\
A=\frac{1}{2} \times 64 \sqrt{3} \\
A=32 \sqrt{3}
\end{gathered}
$$

Group Practice

so Find the area for the following diagrams in your groups. 9.)

Solution:

Area of a Square

$$
\begin{gathered}
A=\frac{1}{2}(15.3 \times 12.9) \\
A=\frac{1}{2} \times 197.37 \\
\boldsymbol{A}=\mathbf{9 8 . 6 8 5}
\end{gathered}
$$

