Geometry Unit 10

11-4: Areas of Regular Polygons

Areas of Regular Polygons

- Content Objective: Students will be able to use theorems and equations to solve for the area of regular polygons.
- Language Objective: Students will be able to identify various polygons, as well as find their area using equations.

Regular Polygons

- Given any circle, you can inscribe in it a regular polygon of any number of sides.

Square - 4 Sides
Hexagon - 6 Sides
Decagon - 10 Sides

Regular Polygons - Vocabulary

- The relationship between circles and polygons leads to the following terms:

1. The center of a regular polygon is the center of the circle.
2. The radius of the regular polygon is the radius of the circle.
3. A central angle of a regular polygon is an angle formed by two radii drawn at the center.
4. The apothem of a regular polygon is the perpendicular distance from the center of the polygon to a side.

Regular Polygons - Vocabulary

- Example of each term (on an Octagon)

Regular Polygons

- When a central angle is made using two radii that connect to vertices of the polygon, it splits the measure of a circle into as many parts as there are sides.

Square
Central Angle: $\mathbf{9 0}^{\circ}$

Hexagon
Central Angle: 60°

Decagon
Central Angle: $\mathbf{9 0}^{\circ}$

Area of Regular Polygons

Theorem 11-6: The area of a regular polygon is equal to half the product of the apothem and the perimeter.

Equation: $A=\frac{1}{2} a p$

$$
p=s \times \# o f \text { sides }
$$

Practice

- Find the area of the polygon
- Regular Hexagon with Apothem 9

To solve, we also need the perimeter.

We can use the apothem to find the measure of one side

We start by constructing a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

We can use the rules for this type of triangle to find the measure of half the side.

$$
\frac{1}{2} s=3 \sqrt{3}, \quad s=6 \sqrt{3}
$$

$$
p=36 \sqrt{3}
$$

Practice

- Find the area of the polygon
- Regular Hexagon with Apothem 9

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 9 \times 36 \sqrt{3} \\
A=162 \sqrt{3}
\end{gathered}
$$

Practice

- Find the area of the polygon
- Regular decagon inscribed in a circle with radius 10

We will need to use trig to find the side and apothem.

Apothem: $\quad \cos 18=\frac{a}{10}$

$$
a=10 \times \cos 18=9.5106
$$

Side: $\quad \sin 18=\frac{h}{10}$

$$
\begin{gathered}
h=10 \times \sin 18=3.0902 \\
s=h \times 2=6.1804
\end{gathered}
$$

Finding the area can now be done in one of two ways...

Practice

- Find the area of the polygon
- Regular decagon inscribed in a circle with radius 10

Method 1:

$$
\begin{gathered}
A=10 \times \text { area of the triangle } \\
A=10 \times \frac{1}{2}(9.5106)(6.1804) \\
A \approx \mathbf{2 9 4}
\end{gathered}
$$

Method 2:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=1 / 2(9.5106)(10 \times 6.1804) \\
A \approx \mathbf{2 9 4}
\end{gathered}
$$

Group Practice

- Find the area of the polygons in your groups

$$
p=12 \sqrt{3} \times 3=36 \sqrt{3}
$$

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 6 \times 36 \sqrt{3} \\
A=\mathbf{1 0 8} \sqrt{\mathbf{3}}
\end{gathered}
$$

Group Practice

- Find the area of the polygons in your groups 2.)

Solution:

$$
p=10 \times 4=40
$$

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 5 \times 40 \\
\boldsymbol{A}=\mathbf{1 0 0}
\end{gathered}
$$

Group Practice

- Find the area of the polygons in your groups
3.)

We will need to use trig to find the side and apothem.

Apothem: $\quad \cos 36=\frac{a}{15}$

$$
a=15 \times \cos 36=12.1353
$$

Side: $\quad \sin 36=\frac{h}{15}$

$$
\begin{gathered}
h=15 \times \sin 36=8.8168 \\
s=h \times 2=17.6336
\end{gathered}
$$

Solution on next slide..

Group Practice

- Find the area of the polygons in your groups 3.)

Solution:

$$
A=\frac{1}{2} a p
$$

$$
\begin{gathered}
A=\frac{1}{2} \times 12.1353 \times(5 \times 17.6336) \\
\boldsymbol{A}=\mathbf{5 3 4 . 9 7 2 6}
\end{gathered}
$$

Group Practice

- Find the area of the polygons in your groups 4.)

$$
p=14 \times 6=84
$$

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 7 \sqrt{3} \times 84 \\
\boldsymbol{A}=\mathbf{2 9 4} \sqrt{\mathbf{3}}
\end{gathered}
$$

Group Practice

- Find the area of the polygons in your groups

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 11 \times 56 \\
\boldsymbol{A}=\mathbf{3 0 8}
\end{gathered}
$$

$$
p=8 \times 7=56
$$

Group Practice

- Find the area of the polygons in your groups 6.)

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 12 \times 48 \\
\boldsymbol{A}=\mathbf{2 8 8}
\end{gathered}
$$

$$
p=6 \times 8=48
$$

Group Practice

- Find the area of the polygons in your groups

7.)

We will need to use trig to find the side and apothem.

Apothem: $\quad \cos 20=\frac{a}{10}$

$$
a=10 \times \cos 20=9.3979
$$

Side: $\quad \sin 20=\frac{h}{10}$

$$
\begin{gathered}
h=10 \times \sin 20=3.4202 \\
s=6.8404
\end{gathered}
$$

Solution on next slide..

Group Practice

- Find the area of the polygons in your groups 7.)

Solution:

$$
\begin{gathered}
A=\frac{1}{2} a p \\
A=\frac{1}{2} \times 9.3979 \times(9 \times 6.8404)
\end{gathered}
$$

$$
A=289.2843
$$

Group Practice

- Find the area of the polygons in your groups 8.)

Group Practice

- Find the area of the polygons in your groups 9.)

