GEOMETRY UNIT 11

12-1: Area and Volume of Prisms

Area and Volume of Prisms

\square Content Objective: Students will be able to identify the different types of prisms, as well as the equations for their area and volume.
\square Language Objective: Students will be able to find the areas and volume of prisms.

Prisms

\square We will be examining 3 dimensional figures.
\square The first figure we will be looking at will be the Prisms.
\square The ends of a prism are called the bases.
\square These bases are congruent to each other and are parallel.

Prisms

\square The faces of the prism that are not its bases are known as its lateral faces.
\square Adjacent lateral faces intersect in parallel segments called lateral edges.

Prisms

\square An altitude of a prism is a segment joining the planes that contain the bases.
\square The length of the altitude is the height, h, of the prism.

What we will be Calculating.

\square For prisms, we will be looking for the following values:
1.) Lateral Area: Sum of the areas of the lateral faces
2.) Total Area: The area of the entire prism

Equation: T. A. $=$ L. $A .+2 B$
where B is the area of each base.
3.) Volume: The space that can be contained within the prism.

Area of a Prism

\square Theorem 12-1: The lateral area of a right prism equals the perimeter of a base times the height of the prism.

Equation: $A=p h$

Volume of a Prism

\square Theorem 12-2: The volume of a right prism equals the area of a base times the height of the prism.

Cubes

\square A rectangular prism with square faces is known as a cube.
\square Since each face is a square, then all of its edges have equal length.
\square The lateral and total areas are found using the same formulas given.
\square The volume however can be simplified to:

$$
V=e^{3}
$$

where e represents a single edge

Example

\square Given a right triangular prism, find the a.) Lateral Area b.) Total Area c.) Volume

Example \#1 Solution

Lateral Area

$$
\begin{gathered}
L . A .=p h \\
=(6.5+7+10.5) \\
\times 15 \\
=24 \times 15 \\
=\mathbf{3 6 0}
\end{gathered}
$$

Total Area

$$
\begin{aligned}
& \text { T.A. }=\text { L.A. }+2 B \\
& =360
\end{aligned}
$$

$$
\begin{aligned}
& +2\left(\frac{1}{2}\right. \\
& \times 10.5 \times 4) \\
= & 360+42 \\
= & 402
\end{aligned}
$$

Volume

$$
V=B h
$$

$$
=\left(\frac{1}{2} \times 10.5\right.
$$

$$
\begin{aligned}
& \times 4) \times 15 \\
& 21 \times 15
\end{aligned}
$$

$$
=315
$$

Example

\square Given a right trapezoidal prism, find the a.) Lateral Area b.) Total Area c.) Volume

Example \#2 Solution

Lateral Area

$$
\begin{gathered}
L . A .=p h \\
=(5+5+6 \\
+12) \times 10 \\
=28 \times 10 \\
=\mathbf{2 8 0}
\end{gathered}
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=\text { L. A. }+2 B \\
=280+2 \times 4 \\
\times \frac{1}{2}(6 \\
+12) \\
=280+72 \\
=\mathbf{3 5 2}
\end{gathered}
$$

Volume

$$
V=B h
$$

$$
\begin{gathered}
=4 \times \frac{1}{2}(6+12) \\
\times 10 \\
=36 \times 10 \\
=\mathbf{3 6 0}
\end{gathered}
$$

Group Practice

\square For each of the following right prisms, find the a.) Lateral Area
b.) Total Area
c.) Volume

Group \#1 Solution

Lateral Area

$$
\begin{gathered}
\text { L.A. }=p h \\
=(16+10+10) \\
\times 15 \\
=36 \times 15 \\
=540
\end{gathered}
$$

Total Area

$$
\begin{aligned}
& \text { T.A. }=L \cdot A \cdot+2 B \\
& =540
\end{aligned}
$$

$$
\begin{aligned}
& \quad+2\left(\frac{1}{2} \times 16\right. \\
& \times 6) \\
& =540+96 \\
& =636
\end{aligned}
$$

Volume

$$
V=B h
$$

$$
=\left(\begin{array}{c}
\left.\frac{1}{2} \times 16 \times 6\right) \\
\times 15
\end{array}\right.
$$

$$
=48 \times 15
$$

$$
=720
$$

Group Practice

\square For each of the following right prisms, find the a.) Lateral Area 2.)
b.) Total Area
c.) Volume

Group \#2 Solution

Lateral Area

$$
L . A .=p h
$$

$$
=4(5) \times 5
$$

$$
=20 \times 5
$$

$$
=100
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=\text { L.A. }+2 B \\
=100+2\left(5^{2}\right) \\
=100+50 \\
=\mathbf{1 5 0}
\end{gathered}
$$

Volume

$$
\begin{gathered}
V=B h \\
=5^{2} \times 5 \\
=25 \times 5 \\
=\mathbf{1 2 5}
\end{gathered}
$$

Group Practice

\square For each of the following right prisms, find the a.) Lateral Area 3.)
b.) Total Area
c.) Volume

Group \#3 Solution

Lateral Area

$$
\begin{gathered}
L . A .=p h \\
=(6+6+4 \\
+4) \times 3 \\
=20 \times 3 \\
=\mathbf{6 0}
\end{gathered}
$$

Total Area

$$
\begin{aligned}
& \text { T.A. }=L . A .+2 B \\
& =60+2(2 \times 6) \\
& =60+24 \\
& =\mathbf{8 4}
\end{aligned}
$$

Volume

$$
\begin{gathered}
V=B h \\
=(2 \times 6) \times 3 \\
=12 \times 3 \\
=\mathbf{3 6}
\end{gathered}
$$

Group Practice

\square For each of the following right prisms, find the a.) Lateral Area
b.) Total Area
c.) Volume 4.)

Group \#4 Solution

$$
\begin{array}{c|c}
\text { Lateral Area } & \text { Total Area } \\
\begin{array}{c}
L . A .=p h \\
=(9+9+5+5)
\end{array} & T . A .=L . A .+2 B \\
\times 4 & =112+2(9 \times 5) \\
=28 \times 4 & =112+90 \\
=\mathbf{2 0 2}
\end{array}
$$

$$
=112
$$

Volume

$$
\begin{gathered}
V=B h \\
=(9 \times 5) \times 4 \\
=45 \times 4 \\
=\mathbf{1 8 0}
\end{gathered}
$$

Group Practice

\square For the following right prisms, you are given lateral area or the volume. First find the height, then find the rema

Given:

Volume: $V=330$

Group \#5 Solution

Height

$$
\begin{aligned}
& V=B h \\
& 330=3 \times \frac{1}{2}(7 \\
&+15) \times h \\
& 330=33 \times h \\
& \boldsymbol{h}=\mathbf{1 0}
\end{aligned}
$$

Lateral Area

$$
\begin{gathered}
L . A .=p h \\
=(15+7+5 \\
+5) \times 10 \\
=32 \times 10 \\
=\mathbf{3 2 0}
\end{gathered}
$$

Total Area

$$
\begin{gathered}
\text { T. A. }=\text { L. A. }+2 B \\
=320+2 \times 3 \\
\times \frac{1}{2}(7 \\
+15) \\
=320+66 \\
=\mathbf{3 8 6}
\end{gathered}
$$

Group Practice

\square For the following right prisms, you are given lateral area or the volume. First find the height, then find the remaining values.
6.)

Given:
Lateral Area: L. A. $=66$

Group \#6 Solution

Lateral Area

$$
L . A .=p h
$$

$$
66=(9+9+2
$$

$$
+2) \times h
$$

$$
66=22 \times h
$$

$$
h=3
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=L . A .+2 B \\
=66+2(9 \times 2) \\
=66+36 \\
=\mathbf{1 0 2}
\end{gathered}
$$

Volume

$$
\begin{gathered}
V=B h \\
=(9 \times 2) \times 3 \\
=18 \times 3 \\
=\mathbf{5 4}
\end{gathered}
$$

