GEOMETRY UNIT 11

12-2: Area and Volume of Pyramids

AREA AND VOLUME OF PYRAMIDS

Content Objective: Students will be able to identify the parts required for finding the areas and volume of Regular Pyramids.
-Language Objective: Students will be able to use equations to find the areas and volume of Regular Pyramids.

PYRAMIDS

- Our next figure is a Pyramid
- It only has one base, but that base can be any polygon.
- The lateral faces are all triangles.
- It has a vertex (i.e. The point where all the lateral edges meet).

PYRAMIDS

- Refer to this example (a regular square Pyramid):
- The base is a regular polygon.
*This means that all the sides of the base are congruent.
- All lateral edges are congruent.
- All lateral faces are congruent Isosceles Triangles.

PYRAMIDS

- Refer to this example (a regular square Pyramid):
- The height of a lateral face is called the Slant Height.
*(Slant Height is denoted by the letter l)
- The altitude (or height) meets the base at its center.

AREA OF A PYRAMID

- Theorem 12-3: The lateral area of a pyramid equals half the perimeter of the base times the slant height.

Equation: $L \cdot A .=\frac{1}{2} p l$

VOLUME OF A PYRAMID

- Theorem 12-4: The volume of a pyramid equals one third the area of the base times the height of the pyramid.

Equation: $V=\frac{1}{3} B h$

PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

EXAMPLE \#1 SOLUTION

$$
\begin{array}{c|c}
\text { Lateral Area } & \text { Total Area } \\
\text { L.A. }=\frac{1}{2} p l & \text { T.A. }=L \cdot A \cdot+B \\
=\mathbf{8 1}+\mathbf{9} \sqrt{3} \\
=\frac{1}{2} \times 18 \times 9 & \approx \mathbf{9 6 . 5 9} \\
=\mathbf{8 1} &
\end{array}
$$

Volume

$$
V=\frac{1}{3} B h
$$

$$
=\frac{1}{3} \times 9 \sqrt{3} \times 8
$$

$$
=3 \sqrt{3} \times 8
$$

$$
=24 \sqrt{3}
$$

PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area 2.)
b.) Total Area
c.) Volume

$$
p=40
$$

$$
l=15
$$

$$
h=9
$$

$$
B=\mathbf{1 0}^{\mathbf{2}}
$$

$=100$

EXAMPLE \#2 SOLUTION

$$
\begin{array}{c|c}
\text { Lateral Area } & \text { Total Area } \\
\text { L.A. }=\frac{1}{2} p l & \text { T.A. }=L . A .+B \\
=300+100 \\
=\frac{1}{2} \times 40 \times 15 & =400 \\
=300 &
\end{array}
$$

Volume
$V=\frac{1}{3} B h$
$=\frac{1}{3} \times 100 \times 9$
$=300$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

$$
\begin{aligned}
p & =48 \\
l & =13.3 \\
h & =9.5 \\
B & =12^{2} \\
& =144
\end{aligned}
$$

GROUP \#1 SOLUTION

$$
\begin{array}{c|c|c}
\text { Lateral Area } & \text { Total Area } & \text { Volume } \\
\text { L.A. }=\frac{1}{2} p l & \begin{array}{c}
T . A .=L . A .+B \\
=319.2+144 \\
=\frac{1}{2} \times 48
\end{array} & V=\frac{1}{3} B h \\
\times 13.3 & & =\frac{1}{3} \times 144 \times 9.5 \\
=319.2 & & =\mathbf{4 5 6}
\end{array}
$$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

GROUP \#2 SOLUTION

$$
\begin{array}{c|c}
\text { Lateral Area } & \text { Total Area } \\
\text { L.A. }=\frac{1}{2} p l & \text { T.A. }=L . A .+B \\
=198+121 \\
=\frac{1}{2} \times 44 \times 9 & =319 \\
=198 &
\end{array}
$$

Volume

$$
V=\frac{1}{3} B h
$$

$$
\begin{gathered}
=\frac{1}{3} \times 121 \times 7.5 \\
=302.5
\end{gathered}
$$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

$$
\begin{aligned}
p & =36 \\
l & =8 \\
h & =6 \\
B & =\frac{1}{2} \times 12 \times 6 \sqrt{3} \\
& =36 \sqrt{3}
\end{aligned}
$$

GROUP \#3 SOLUTION

$$
\begin{aligned}
& \text { Lateral Area } \\
& \qquad \begin{array}{c}
\text { L.A. }=\frac{1}{2} p l \\
=\frac{1}{2} \times 36 \times 8 \\
=18 \times 8 \\
=144
\end{array}
\end{aligned}
$$

Total Area

$$
\begin{gathered}
\text { T. A. }=L \cdot A \cdot+B \\
=144+36 \sqrt{3} \\
\approx 206.35
\end{gathered}
$$

Volume

$$
V=\frac{1}{3} B h
$$

$=\frac{1}{3} \times 36 \sqrt{3} \times 6$ $=72 \sqrt{3}$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

$$
\begin{aligned}
p & =40 \\
l & =10.6 \\
h & =7 \\
B & =\frac{1}{2} \times 40 \times 5.5 \\
& =110
\end{aligned}
$$

GROUP \#4 SOLUTION

$$
\begin{gathered}
\text { Lateral Area } \\
\begin{array}{c}
\text { L.A. }=\frac{1}{2} p l \\
=\frac{1}{2} \times
\end{array}{ }^{2} 40 \\
\times 10.6 \\
=212
\end{gathered}
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=L \cdot A \cdot+B \\
=212+110 \\
=322
\end{gathered}
$$

Volume

$$
V=\frac{1}{3} B h
$$

$$
=\frac{1}{3} \times 110 \times 7
$$

$$
=\frac{770}{3}
$$

$$
\approx 256.67
$$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
5.)
b.) Total Area
c.) Volume

GROUP \#5 SOLUTION

$$
\begin{array}{c|c}
\text { Lateral Area } & \text { Total Area } \\
\text { L.A. }=\frac{1}{2} p l & T . A .=L . \\
=540+ \\
=\frac{1}{2} \times 72 \times 15 & =\mathbf{8 6} \\
=540 &
\end{array}
$$

Volume

$$
\begin{gathered}
V=\frac{1}{3} B h \\
=\frac{1}{3}(324) \times 12 \\
=324 \times 4 \\
=\mathbf{1 2 9 6}
\end{gathered}
$$

GROUP PRACTICE

- For the following regular pyramids, First find the values listed, then find the
a.) Lateral Area
b.) Total Area
c.) Volume

GROUP \#6 SOLUTION

$$
\begin{array}{c|c|c}
\text { Lateral Area } & \text { Total Area } & \text { Volume } \\
\text { T.A. }=L . A .+B & V=\frac{1}{3} p l & =1000+600 \\
=\frac{1}{2} \times 100 \times 20 & =\mathbf{1 6 0 0} & =\frac{1}{3} \times 600 \times 16 \\
l=\mathbf{1 0 0 0} & & =\mathbf{3 2 0 0}
\end{array}
$$

