Geometry Unit 11

12-3: Area and Volume of Cylinders and Cones

12.1-12.2 Warm -up

Complete the worksheet provided
*Keep the backside for your notes.

Cylinders and Cones

- Content Objective: Students will be able to compare and contrast cylinders and cones to prisms and pyramids to determine their area and volume equations.
- Language Objective: Students will be able to use equations to solve for the areas and volume of cylinders and cones.

Cylinders - A Introduction

For the following diagrams, compare and contrast a Right Prism to a Cylinder.
Discuss your thoughts in your group, and take notes of your thoughts in the space provided.
For the discussion, focus on these questions:

- What do you notice about each the cylinder?
- How do its parts compare to that of the prism? How do they differ?

Right Prism

Cylinder

Cylinders

- A Cylinder shares similar properties to the right prism.
- It has two bases, and these bases are always circles.
- The line segment joining the bases is the height, \boldsymbol{h}.
- The radius of the base is also the radius of the cylinder.
*How
would the lateral

Right Prism

Cylinder
area and volume of a cylinder be similar to those of Prisms?

Cylinders - Lateral Area

Theorem 12-5: The lateral area of a cylinder equals the circumference of a base time the height of the cylinder.

Equation: $\boldsymbol{L} . \boldsymbol{A} .=\mathbf{2 \pi r} \boldsymbol{h}$
*Total Area: $\boldsymbol{T} \cdot \boldsymbol{A} .=\boldsymbol{L} \cdot \boldsymbol{A} \cdot+\mathbf{2 B}$

Cylinders - Volume

Theorem 12-6: The volume of a cylinder equals the area of a base time the height of the cylinder.

Equation: $\boldsymbol{V}=\boldsymbol{\pi} \boldsymbol{r}^{\mathbf{2}} \boldsymbol{h}$

Cylinders - Examples

For the following Cylinders, find the
a.) Lateral Area
1.)
b.) Total Area
c.) Volume

$$
\begin{aligned}
& r=8 \\
& h=7 \\
& B=\pi\left(8^{2}\right)=\mathbf{6 4 \pi}
\end{aligned}
$$

Cylinder Example \#1 Solution

Lateral Area \mid Total Area

$$
\begin{array}{c|c}
\text { L.A. }=2 \pi r h & \text { T.A. }=\text { L.A. }+2 B \\
=2 \pi \times 8 \times 7 & =112 \pi+2(64 \pi) \\
=\mathbf{1 1 2 \pi} & =112 \pi+128 \pi
\end{array}
$$

$$
=240 \pi
$$

Volume

$$
\begin{gathered}
V=\pi r^{2} h \\
=64 \pi \times 7 \\
=448 \pi
\end{gathered}
$$

Cylinders - Examples

For the following Cylinders, find the
a.) Lateral Area
b.) Total Area
c.) Volume

$$
\begin{aligned}
& r=6 \\
& h=15 \\
& B=\pi\left(6^{2}\right)=\mathbf{3 6 \pi}
\end{aligned}
$$

Cylinder Example \#2 Solution

Lateral Area

$$
\begin{array}{c|c}
L . A .=2 \pi r h & \text { T.A. }=L . A .+2 B \\
=2 \pi \times 6 \times 15 & =180 \pi+2(36 \pi) \\
=\mathbf{1 8 0 \pi} & =180 \pi+72 \pi
\end{array}
$$

$$
=252 \pi
$$

Volume

$$
\begin{gathered}
V=\pi r^{2} h \\
=36 \pi \times 15 \\
=\mathbf{5 4 0} \boldsymbol{\pi}
\end{gathered}
$$

Cones

For the following diagrams, compare and contrast a Regular Pyramid to a Cone. Discuss your thoughts in your group, and take notes of your thoughts in the space provided.
For the discussion, focus on these questions:

- What do you notice about each the cone?
- How do its parts compare to that of the pyramid? How do they differ?

Cones

- A Cone shares similar properties to the regular pyramid.
- It has a single bases, and that base will always be a circle.
- The line segment joining the vertex to the base is the height, \boldsymbol{h}.
- The segment joining the vertex to an end of the diameter of the base is the slant height, \boldsymbol{l}.
- The radius of the base is also the radius of the cylinder.

*How would the lateral area and volume of a cone be similar to those of pyramids?

Cones - Lateral Area

Theorem 12-7: The lateral area of a cone equals half the circumference of the base time the slant height.

Equation: $L . A .=\frac{1}{2} \times 2 \pi r l$

$$
\begin{gathered}
\text { Or } \\
L . A .=\pi r l
\end{gathered}
$$

*Total Area: $\boldsymbol{T} \cdot \boldsymbol{A} .=\boldsymbol{L} \cdot \boldsymbol{A} \cdot+\boldsymbol{B}$

Cones-Volume

Theorem 12-8: The volume of a cones equals one third the area of the base times the height of the cone.

Equation: $V=\frac{1}{3} \pi r^{2} h$

Cones - Examples

For the following Cones, find the
a.) Lateral Area
b.) Total Area
c.) Volume

$$
\begin{aligned}
& r=3 \\
& l=14 \\
& h=10 \\
& B=\pi\left(3^{2}\right)=9 \pi
\end{aligned}
$$

Cone Example \#1 Solution

Lateral Area

$$
\begin{gathered}
L . A .=\pi r l \\
=\pi \times 3 \times 14 \\
=42 \pi
\end{gathered}
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=\text { L.A. }+B \\
=42 \pi+9 \pi \\
=\mathbf{5 1} \boldsymbol{\pi}
\end{gathered}
$$

Volume

$$
\begin{gathered}
V=\frac{1}{3} \pi r^{2} h \\
=\frac{1}{3} \times 9 \pi \times 10 \\
=30 \pi
\end{gathered}
$$

Cones - Examples

For the following Cones, find the

a.) Lateral Area
b.) Total Area
c.) Volume

Cone Example \#1 Solution

Lateral Area

$$
\begin{gathered}
\text { L.A. }=\pi r l \\
=\pi \times 5 \times 13 \\
=65 \pi
\end{gathered}
$$

Total Area

$$
\begin{gathered}
\text { T.A. }=\text { L.A. }+B \\
=65 \pi+25 \pi \\
=\mathbf{9 0 \pi}
\end{gathered}
$$

Volume

$$
V=\frac{1}{3} \pi r^{2} h
$$

$$
=\frac{1}{3} \times 25 \pi \times 12
$$

$=100 \pi$

