GEOMETRY UNIT 11

12-5: Area and Volumes of Similar Solids

Warm-up

- Look at the following shapes and answer the following questions:
-What do you notice about the shapes?
- How are they alike?
- How are they different?
- What is the key word that links these shapes together.
- It is that they are \qquad Similar

Area and Volumes of Similar Solids

- Content Objective: Students will be able to identify ratios between the values of similar solids.
- Language Objective: Students will be able to find missing values using proportions between similar solids.

Recall: Similar Polygons

- Two polygons are similar if their vertices can be paired so that:
1.) Corresponding angles are congruent.
2.) Corresponding sides are in proportion.
(i.e. Their side lengths have the same ratio.)

Ex:

Similar Solids

- Similar Solids are solids that have the same shape but not necessarily the same size.
- To determine if two solids are similar, you must check
- That their bases are similar
- That corresponding lengths are proportional
- If the solids are similar, we will be able to identify a ratio between their corresponding parts, known as the Scale Factor.

Checking for Similarity

Examine the following Cylinders:

- The bases are similar (all circles are similar).
- As for the lengths, they are proportional, because

$$
\begin{aligned}
& \frac{6}{4}=\frac{12}{8} \\
& \frac{3}{2}=\frac{3}{2}
\end{aligned}
$$

Therefore, the two cylinders are similar with a scale factor of $\frac{3}{2}$

Examples of Similar Solids

Examine the following Cylinders:

- The bases are similar (why?).
- As for the lengths, they are proportional, because

$$
\begin{gathered}
\frac{8}{4}=\frac{12}{6}=\frac{10}{5} \\
2=2=2
\end{gathered}
$$

Therefore, the two Pyramids are similar with a scale factor of 2

Examining Similarity

- Depending on what values we are comparing the scale factor between similar solids may change.
- Find the scale factor between the values given in each of the first two columns. Identify how these scale factors relate to the original scale factor given.

Pyramid I Pyramid II

Scale Factor: $\quad 2 / 1$
Base Perimeter: $12 \quad 6$

Lateral Area:
Volume:
240
60

384
48

Comparing the Scale Factors

- Now, determine the scale factor between the values given from each shape, then compare them to the original scale factor between the shapes.

Base Perimeter Lateral Area

Volume

$$
\frac{2}{1}=\frac{2}{1}
$$

$$
\begin{array}{l|r}
\frac{240}{60}=\frac{4}{1} & \frac{384}{48}=\frac{8}{1} \\
\frac{4}{1}=\frac{2^{2}}{1^{2}} & \frac{8}{1}=\frac{2^{3}}{1^{3}}
\end{array}
$$

Can you see the relationship between the original scale factor and the scale factors for the base perimeter, lateral area, and volume?

Examining Similarity

- Now we are going to see how this relationship affects the area and volume of similar solids.
- Find the scale factor between the values given in each of the first two columns. Identify how these scale factors relate to the original scale factor given.

Cylinder I Cylinder II

Scale Factor: $\quad 3 / 2$
Base Circumference: $\mathbf{1 2 \pi} \quad \mathbf{8 \pi}$

Lateral Area:
Volume:
1728π
512π

Comparing the Scale Factors

- Now, determine the scale factor between the values given from each shape, then compare them to the original scale factor between the shapes.

Base

Circumference

$$
\frac{I}{I I}
$$

Compared to Scale Factor:

$$
\frac{3}{2}=\frac{3}{2}
$$

Lateral Area

$$
\begin{aligned}
& \frac{144 \pi}{64 \pi}=\frac{9}{4} \\
& \frac{9}{4}=\frac{3^{2}}{2^{2}}
\end{aligned}
$$

Volume

$$
\begin{aligned}
& \frac{384 \pi}{48 \pi}=\frac{27}{8} \\
& \frac{27}{8}=\frac{3^{3}}{2^{3}}
\end{aligned}
$$

Can you see the relationship between the original scale factor and the scale factors for the base circumference, lateral area, and volume?

Theorem for Similar Solids

Theorem 12-11: If the scale factor of two similar solids is $\boldsymbol{a}: \boldsymbol{b}$, then
(1) The ratio of corresponding perimeters is $\boldsymbol{a}: \boldsymbol{b}$
(2) The ratio of the base areas, of the lateral area, and of the total areas is $\boldsymbol{a}^{2}: \boldsymbol{b}^{\mathbf{2}}$
(3) The ratio of the volumes is $\boldsymbol{a}^{3}: \boldsymbol{b}^{\mathbf{3}}$

Practice

1.) Given the following measurements for similar solids, identify the reduced ratio for each of the following.

Given height 2 and height 5
(a.) Scale Factor $\quad 2 / 5$
(b.) Total Area ${ }^{2} / 5^{2}=4 / 25$

Practice

- 2.) Given the following measurements for similar solids, identify the reduced ratio for each of the following.
Given areas 4π and 12π.
(a.) Scale Factor $4 \pi / 12 \pi=1 / 3$
(b.) Volume $1^{3} / 3^{3}=1 / 27$

Practice

-3.) The following solids are similar. Use the given information to solve for the value:

- The scale factor of solid A : solid B is 3:4.
- If solid A has a circumference of 18 , calculate the circumference of solid B.

Solution: From the Theorem, we have

$$
\begin{gathered}
\frac{\operatorname{Circ} \cdot A}{\operatorname{Circ} . B}=\frac{A}{B} \\
\frac{18}{x}=\frac{3}{4} \\
3 x=72 \\
x=\mathbf{2 4}
\end{gathered}
$$

Practice

- 4.) The following solids are similar. Use the given information to solve for the value:
- The scale factor of solid C : solid D is 6:5.
- If solid C has a base area of 108, calculate the base area of solid D.

Solution: From the Theorem, we have

$$
\begin{gathered}
\frac{\text { Base } C}{\text { Base } D}=\frac{C^{2}}{D^{2}}=\frac{6^{2}}{5^{2}} \\
\frac{108}{x}=\frac{36}{25} \\
36 x=27000 \\
x=75
\end{gathered}
$$

Group Practice

1.) Given the following measurements for similar solids, identify the reduced ratio for each of the following.

Given height 4 and height 7
(a.) Scale Factor $\quad 4 / 7$
(b.) Total Area $4^{2} / 7^{2}=16 / 49$

Group Practice

- 2.) Given the following measurements for similar solids, identify the reduced ratio for each of the following.
Given areas 3π and 5π.
(a.) Scale Factor $3 \pi / 5 \pi=3 / 5$
(b.) Volume $3^{3} / 5^{3}=27 / 125$

Group Practice

-3.) The following solids are similar. Use the given information to solve for the value:

- The scale factor of solid A : solid B is $7: 8$.
- If solid A has a perimeter of 18 , calculate the perimeter of solid B.

Solution: From the Thm 12-11, we have

$$
\begin{gathered}
\frac{\text { Per. } A}{\text { Per. } B}=\frac{A}{B} \\
\frac{35}{x}=\frac{7}{8} \\
7 x=280 \\
x=40
\end{gathered}
$$

Group Practice

- 4.) The following solids are similar. Use the given information to solve for the value:
- The scale factor of solid C : solid D is 5:1.
- If solid C has a lateral area of 108, calculate the lateral area of solid D.

Solution: From the Thm 12-11, we have

$$
\begin{aligned}
\frac{\text { L.A. of } C}{\text { L.A. of } D} & =\frac{C^{2}}{D^{2}}=\frac{5^{2}}{1^{2}} \\
\frac{100}{x} & =\frac{25}{1} \\
25 x & =100 \\
\boldsymbol{x} & =4
\end{aligned}
$$

