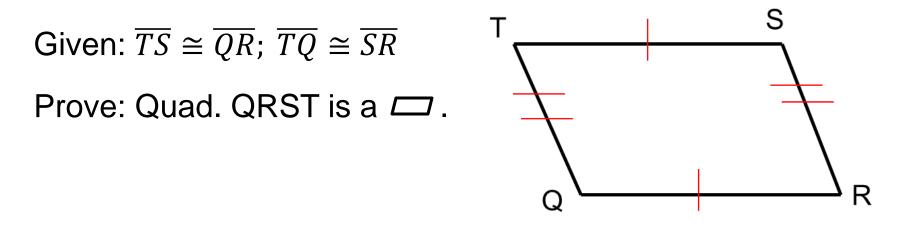
GEOMETRY UNIT 6

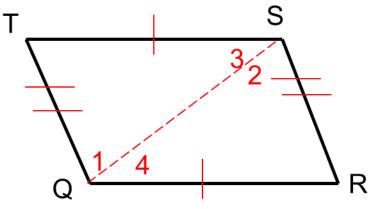
PROVING QUADRILATERALS ARE PARALLELOGRAMS

PROVING THAT A QUADRILATERAL IS A PARALLELOGRAM


<u>Content Objective</u>: Students will be able to prove that a Quadrilateral is a Parallelogram by using special properties in theorems.

Language Objective: Students will be able to explain what properties and theorems allow a Quadrilateral to be a Parallelogram.

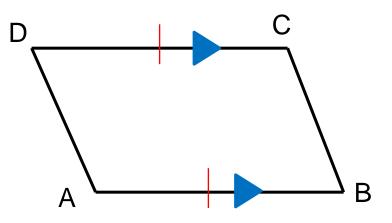
5 WAYS TO PROVE THAT A QUADRILATERAL IS A PARALLELOGRAM


- 1.) Show that both pairs of opposite sides are parallel
- 2.) Show that both pairs of opposite sides are congruent.
- 3.) Show that one pair of opposite sides are both parallel and congruent.
- 4.) Show that both pairs of opposite angles are congruent.
- 5.) Show that the diagonals bisect each other.

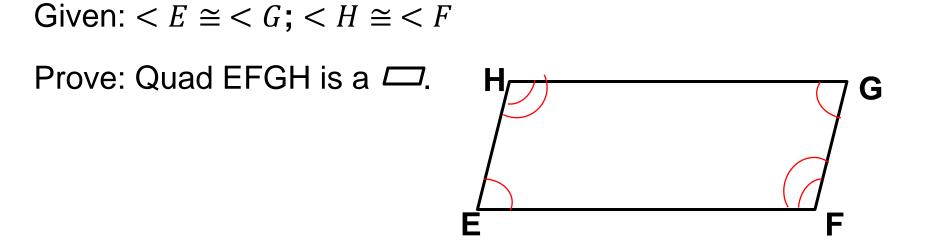
<u>Theorem 5-4:</u> If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

THEOREM 5-4 – PROOF

Given: $\overline{TS} \cong \overline{QR}$; $\overline{TQ} \cong \overline{SR}$ Prove: Quad. QRST is a \square .

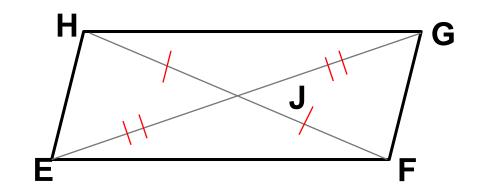


Statements	Reasons
1. $\overline{TS} \cong \overline{QR}$; $\overline{TQ} \cong \overline{SR}$	1. Given
2. Draw QS	2. Between any 2 pts., there exists exactly 1 line.
3. $\overline{QS} \cong \overline{QS}$	3. Reflexive Property
4. $\Delta TSQ \cong \Delta RQS$	4. SSS Postulate
5. < 1 \cong < 2; < 3 \cong < 4	5. CPCTC
6. $\overline{TS} / / \overline{QR}$; $\overline{QT} / / \overline{RS}$	6. If 2 lines ACBAT and alt. int. <'s are \cong , then the lines are //.
7. Quad QRST is a \square	7. Def. of a Parallelogram

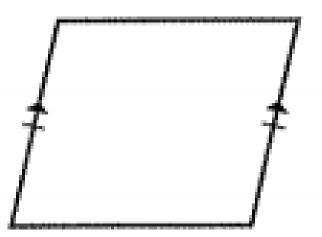

<u>Theorem 5-5:</u> If one pair of opposite sides or a quadrilateral are both congruent and parallel, then the quadrilateral is a parallelogram.

Given: $\overline{AB} \cong \overline{CD}$; $\overline{AB} / / \overline{CD}$

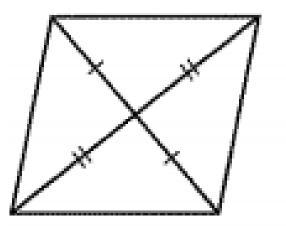
Prove: Quad ABCD is a \square .


Theorem 5-6: If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

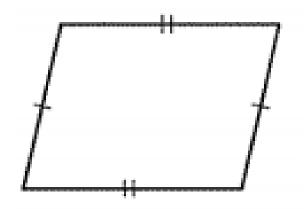
Theorem 5-7: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.


Given: \overline{HF} and \overline{EG} bisect each other at point J.

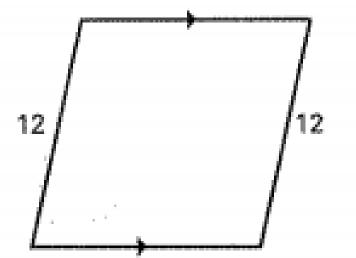
Prove: Quad EFGH is a \square .


Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.

Yes; One pair of opposite sides are both parallel and congruent.


Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.

Yes; The diagonals bisect each other.

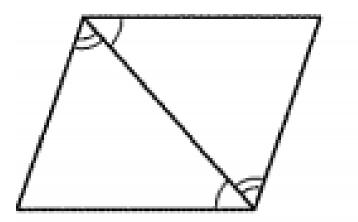

Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.

Yes; Both pairs of opposite sides are congruent.

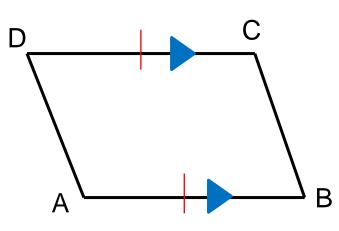

Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.

No; The pairs of parallel and congruent sides are not the same.

Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.


Yes; Both pairs of opposite angles are congruent.

Study the markings on each figure and decide whether the given quadrilateral is a parallelogram. If it is, state the definition or theorem that proves it.


Based off the markings...NO

If you work some things out...YES

THEOREM 5-5 – PROOF

Given: $\overline{AB} \cong \overline{CD}$; $\overline{AB} / / \overline{CD}$ Prove: Quad ABCD is a .

Statements

1. $\overline{AB} \cong \overline{CD}$; $\overline{AB} / / \overline{CD}$)
2. Draw <i>AC</i>	

- **3**. < 1 \cong < 2
- 4. $\overline{AC} \cong \overline{AC}$
- 5. $\triangle ABC \cong \triangle CDA$
- 6. < 3 ≅ < 4
- 7. AD // BC
- 8. Quad ABCD is a \square

Reasons

1. Given

- 2. Between any 2 pts., there exists exactly 1 line.
- 3. If 2 // lines ACBAT, then alt. int. <'s are \cong .
- 4. Reflexive Property
- 5. SAS Postulate
- 6. CPCTC
- 7. If 2 lines ACBAT and alt. int. <'s
- are \cong , then the lines are //.
- 8. Def. of a Parallelogram