Geometry Unit 7 EXECUTE 7-6: Proportional Lengths

...WHO WILL WIN THE \$1.5 BILLION JACKPOT? ...WHO WILL HIT IT BIG AND QUIT THE JOB THEY'VE ALWAYS HATED? ...WHO WILL FINALLY BE ABLE TO POST \$12 MILLION IN BAIL AND GET THEIR BABY DADDY OUT OF JAIL? ...FIND OUT ON THE NEXT EPISODE OF...

∞ Fill in the blanks.

1.) In similar figures, we say that the corresponding angles are

Congruent

2.) In similar figures, we say that the corresponding sides are **Proportional**

3.) A line that intersects two or more lines in different points is known as a **Transversal**

So Content Objectives: Students will be able to find missing side lengths by using proportions in triangles and parallel lines.

So Language Objectives: Students will be able to write and solve various proportions from given triangles and parallel lines.

so Points L and M lie on \overline{AB} and \overline{CD} , respectively.

So If $\frac{AL}{LB} = \frac{CM}{MD}$, then we say that \overline{AB} and \overline{CD} are divided proportionally.

So <u>Theorem 7-3</u> Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides them proportionally.

Given:
$$\Delta RST$$
; $\overrightarrow{PQ} / / \overrightarrow{RS}$

Prove:
$$\frac{RP}{PT} = \frac{SQ}{QT}$$

So Use the triangle proportionality theorem to find proportions that are equivalent to $\frac{RP}{PT} = \frac{SQ}{QT}$

So <u>Corollary</u>: If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Given:
$$\overrightarrow{RX} / / \overrightarrow{SY} / / \overrightarrow{TZ}$$

Prove: $\frac{RS}{ST} = \frac{XY}{YZ}$

Theorem 7-4 Triangle Angle-Bisector Theorem: If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.

Given: ΔDEF ; \overrightarrow{DG} bisects < FDE

18

Make a proportion and solve for the value of x

? = 45

Make a proportion and solve for the value of x

Solution:

 $\frac{?}{25} = \frac{6}{15}$ $\frac{?}{25} = \frac{2}{5}$ 5? = 50? = 10

Make a proportion and solve for the value of x

Solution: $\frac{x}{10-x} = \frac{6}{9}$ $\frac{x}{10-x} = \frac{2}{3}$ 3x = 20 - 2x 5x = 20 x = 4

Make a proportion and solve for the value of x

Solution: 2x - 5 10 2x - 5 5 $\frac{1}{21} = \frac{1}{7}$ 14x - 35 = 10514x = 140x = 10

Make a proportion and solve for the value of x

Solution: 3x - 5 20 $\frac{10}{10} = \frac{10}{8}$ 3x - 5 5 $\frac{10}{10} = \frac{1}{2}$ 6x - 10 = 506x = 60x = 10

Make a proportion and solve for the value of x

 $\frac{7 + 14x}{22} = \frac{35}{10}$ $\frac{7 + 14x}{22} = \frac{7}{2}$ 14 + 28x = 15428x = 140x = 5

