Geometiry Unit 7
 BC)

7-6: Proportional Lengths

...WHO WILL WIN THE \$1.5 BILLION JAGKPOT?
...WHO WILL HIT IT BIG AND QUIT THE JOB THEY'VE ALWAYS HATED?
...WHO WILL FINALLY BE ABLE TO POST \$12 MIILLION IN BAIL AND GET THEIR BABY DADDY OUT OF JAIL? ...FIND OUT ON THE NEXT EPISODE OF...

Warm-ups

so Fill in the blanks.
1.) In similar figures, we say that the corresponding angles are

Congruent

2.) In similar figures, we say that the corresponding sides are

Proportional

3.) A line that intersects two or more lines in different points is known as a Transversal

Proportional Lengths

s Content Objectives: Students will be able to find missing side lengths by using proportions in triangles and parallel lines.
so Language Objectives: Students will be able to write and solve various proportions from given triangles and parallel lines.

Proportional Lengiths

s Points L and M lie on $\overline{A B}$ and $\overline{C D}$, respectively.

∞ If $\frac{A L}{L B}=\frac{C M}{M D}$, then we say that $\overline{A B}$ and $\overline{C D}$ are divided proportionally.

Proportional Lengths

\& Theorem 7-3 Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides them proportionally.

Given: $\triangle R S T ; \overleftrightarrow{P Q} / / \overleftrightarrow{R S}$
Prove: $\frac{R P}{P T}=\frac{S Q}{Q T}$

Proportional Lengths

so Use the triangle proportionality theorem to find proportions that are equivalent to $\frac{R P}{P T}=\frac{S Q}{Q T}$

$$
\begin{array}{ll}
\frac{b}{a}=\frac{d}{c} & \frac{a}{b}=\frac{c}{d} \\
\frac{a}{c}=\frac{b}{d} & \frac{a}{j}=\frac{c}{k} \\
\frac{b}{j}=\frac{d}{k} & \frac{b}{d}=\frac{j}{k}
\end{array}
$$

Proportional Lengths

so Corollary: If three parallel lines intersect two transversals, then they divide the transversals proportionally.

Given: $\overleftrightarrow{R X} / / \overleftrightarrow{S Y} / / \overleftrightarrow{T Z}$
Prove: $\frac{R S}{S T}=\frac{X Y}{Y Z}$

Proportional Lengths

$\&$ Theorem 7-4 Triangle Angle-Bisector Theorem: If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.

Given: $\triangle D E F ; \overrightarrow{D G}$ bisects $<F D E$
Prove: $\frac{G F}{G E}=\frac{D F}{D E}$

Proportional Lengiths Examples

so Make a proportion and solve for the value of x

Solution:

$$
\begin{aligned}
& \frac{?}{18}=\frac{20}{8} \\
& \frac{?}{18}=\frac{5}{2} \\
& 2 ?=90 \\
& ?=45
\end{aligned}
$$

Proportional Lengths Rxamples

so Make a proportion and solve for the value of x

Solution:

$$
\begin{aligned}
& \frac{?}{25}=\frac{6}{15} \\
& \frac{?}{25}=\frac{2}{5} \\
& 5 ?=50 \\
& ?=10
\end{aligned}
$$

Proportional Lengths Fxamples

so Make a proportion and solve for the value of x

Solution:

$$
\begin{aligned}
& \frac{x}{10-x}=\frac{6}{9} \\
& \frac{x}{10-x}=\frac{2}{3} \\
& 3 x=20-2 x \\
& 5 x=20 \\
& x=4
\end{aligned}
$$

Proportional Lengths Examples

so Make a proportion and solve for the value of x

Solution:
$\frac{2 x-5}{21}=\frac{10}{14}$
$\frac{2 x-5}{21}=\frac{5}{7}$
$14 x-35=105$
$14 x=140$
$x=10$

Proportional Lengths Rxamples

so Make a proportion and solve for the value of \boldsymbol{X}

Solution:

$$
\begin{aligned}
& \frac{3 x-5}{10}=\frac{20}{8} \\
& \frac{3 x-5}{10}=\frac{5}{2} \\
& 6 x-10=50 \\
& 6 x=60 \\
& x=10
\end{aligned}
$$

Proportional Lengths Rxamples

so Make a proportion and solve for the value of x
$\frac{7+14 x}{22}=\frac{35}{10}$
$\frac{7+14 x}{22}=\frac{7}{2}$
$14+28 x=154$
$28 x=140$

$x=5$

