GEOMETRY UNIT 8

8-1: Similarity in Right Triangles

Warm-up

- Prove the following similarities (Using one of the postulates/theorems)
1.) $\triangle A C B \sim \triangle A N C$ By AA \sim
$<A C B \cong<A N C$ (Why?)
$<A \cong<A$ (How?)

2.) $\triangle A C B \sim \triangle C N B$ By $\mathrm{AA} \sim$
$<A C B \cong<C N B$ (Why?)
$<B \cong<B$ (How?)
3.) $\triangle A N C \sim \triangle C N B$ By substitution form 1) and 2)

Similarity in Right Triangles

Content Objective: Students will be able to find the geometric mean of two numbers and of the sides of triangles.

- Language Objective: Students will be able write simplified expressions using radicals.

Triangles Similarity Theorem

- Theorem 8-1: If the altitude of a right triangle is drawn on the hypotenuse, then the two triangles formed are similar to the original triangle and to each other.

Given: $\triangle A B C$ with rt. $<A C B$ altitude $\overline{C N}$

Prove: $\triangle A C B \sim \triangle A N C \sim \triangle C N B$

Geometric Mean

- Recall that in the proportions $\frac{a}{x}=\frac{y}{b}$, the terms in red (x and y) are called the Means.
- If a, b, and x are positive numbers and $\frac{a}{x}=\frac{x}{b}$, then x is called the Geometric Mean.
- If you solve this proportion for x...
- Then $x=\sqrt{a b}$
- Try it - Find the Geometric mean for these numbers:

$$
\begin{aligned}
& 2 \text { and } 18 \\
& \begin{aligned}
& x=\sqrt{2 * 18} \\
&=\sqrt{36} \\
&=6
\end{aligned} \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& 22 \text { and } 55 \\
& \begin{aligned}
x & =\sqrt{22 * 55} \\
& =\sqrt{2 * 11 * 5 * 11} \\
& =11 \sqrt{10}
\end{aligned}
\end{aligned}
$$

Corollaries

- Corollary 1: When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.

Given: $\triangle A B C$ with rt. $<A C B$ altitude $\overline{C N}$

Prove: $\frac{A N}{C N}=\frac{C N}{B N}$

Corollaries

- Corollary 2: When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.

Given: $\triangle A B C$ with rt. $<A C B$ altitude $\overline{C N}$

$$
\begin{aligned}
\text { Prove: 1.) } \frac{A B}{A C} & =\frac{A C}{A N} \\
\text { 2.) } \frac{A B}{B C} & =\frac{B C}{B N}
\end{aligned}
$$

Geometric Mean Examples

- Use the proportions given in corollaries 1 and 2 to find the values of $\mathrm{w}, \mathrm{x}, \mathrm{y}$, and z .

For w:

$$
\begin{gathered}
\frac{18}{6}=\frac{6}{w} \text { (Why?) } \\
18=36 w \\
w=2
\end{gathered}
$$

For $\mathrm{x}: x=18-2=16$

For y:

$$
\begin{gathered}
\frac{16}{y}=\frac{y}{2}(\text { Why? }) \\
y^{2}=32 \\
y=\sqrt{32}=\sqrt{16 * 2} \\
y=4 \sqrt{2}
\end{gathered}
$$

$$
\begin{gathered}
\frac{18}{z}=\frac{z}{16}(\text { Why? }) \\
z^{2}=18 * 16 \\
z=\sqrt{18 * 16} \\
z=\sqrt{2 * 9 * 16} \\
z=3 * 4 \sqrt{2}=12 \sqrt{2}
\end{gathered}
$$

Geometric Mean Examples

- Use the proportions given in corollaries 1 and 2 to find the values of x, y, and z.

For x :

$$
\begin{gathered}
\frac{x+7}{12}=\frac{12}{x} \\
144=x^{2}+7 x \\
x^{2}+7 x-144=0 \\
(x+16)(x-9)=0 \\
x+16=0 \text { and } x-9=0 \\
x=9 \text { and } \\
x=-16
\end{gathered}
$$

$$
\begin{gathered}
\frac{25}{y}=\frac{y}{9} \\
y^{2}=225 \\
y=\sqrt{225} \\
y=15
\end{gathered}
$$

$$
\begin{gathered}
\frac{25}{z}=\frac{z}{16} \\
z^{2}=400 \\
z=\sqrt{400} \\
z=20
\end{gathered}
$$

