GEOMETRY UNIT 8

8-1: Similarity in Right Triangles

Warm-up

Prove the following similarities (Using one of the postulates/theorems)

- 2.) $\Delta ACB \sim \Delta CNB$ By AA~
- $< ACB \cong < CNB$ (Why?)
- $< B \cong < B$ (How?)

3.) $\Delta ANC \sim \Delta CNB$ By substitution form 1) and 2)

Similarity in Right Triangles

 Content Objective: Students will be able to find the geometric mean of two numbers and of the sides of triangles.

 Language Objective: Students will be able write simplified expressions using radicals.

Triangles Similarity Theorem

 <u>Theorem 8-1</u>: If the altitude of a right triangle is drawn on the hypotenuse, then the two triangles formed are similar to the original triangle and to each other.

Given: $\triangle ABC$ with rt. < ACBaltitude \overline{CN}

Prove: $\triangle ACB \sim \triangle ANC \sim \triangle CNB$

Geometric Mean

- Recall that in the proportions $\frac{a}{x} = \frac{y}{b}$, the terms in red (x and y) are called the **Means.**
- If *a*, *b*, and *x* are positive numbers and $\frac{a}{x} = \frac{x}{b}$, then x is called the **Geometric Mean.**
- If you solve this proportion for x...
- Then $x = \sqrt{ab}$
- Try it Find the Geometric mean for these numbers:

2 and 18	3 and 27	22 and 55
$x = \sqrt{2 * 18}$	$x = \sqrt{3 * 27}$	$x = \sqrt{22 * 55}$
$=\sqrt{36}$	$=\sqrt{81}$	$=\sqrt{2*11*5*11}$
= 6	= 9	$= 11\sqrt{10}$

Corollaries

 Corollary 1: When the altitude is drawn to the hypotenuse of a right triangle, the length of the altitude is the geometric mean between the segments of the hypotenuse.

Corollaries

Corollary 2: When the altitude is drawn to the hypotenuse of a right triangle, each leg is the geometric mean between the hypotenuse and the segment of the hypotenuse that is adjacent to that leg.

Given: $\triangle ABC$ with rt. < ACB altitude \overline{CN}

Prove: 1.)
$$\frac{AB}{AC} = \frac{AC}{AN}$$

2.) $\frac{AB}{BC} = \frac{BC}{BN}$

Geometric Mean Examples

 Use the proportions given in corollaries 1 and 2 to find the values of w, x, y, and z.

-or w:

$$\frac{18}{6} = \frac{6}{w} \quad \text{(Why?)}$$

$$18 = 36w$$

$$w = 2$$

For x: x = 18 - 2 = 16

For y: $\frac{16}{y} = \frac{y}{2} \quad (Why?)$ $y^2 = 32$ $y = \sqrt{32} = \sqrt{16 * 2}$ $y = 4\sqrt{2}$

For z:

$$\frac{18}{z} = \frac{z}{16} \quad (Why?)$$

$$z^{2} = 18 * 16$$

$$z = \sqrt{18 * 16}$$

$$z = \sqrt{2 * 9 * 16}$$

$$z = 3 * 4\sqrt{2} = 12\sqrt{2}$$

Geometric Mean Examples

Use the proportions given in corollaries 1 and 2 to find the values of x, y, and z.
 For x:

 $\frac{x+7}{12} = \frac{12}{x}$ $144 = x^2 + 7x$ $x^2 + 7x - 144 = 0$ (x+16)(x-9) = 0 x + 16 = 0 and x - 9 = 0 x = 9 and x = -16

For y:	For z:
$\frac{25}{y}$	25 _ <i>z</i>
$\frac{1}{y} = \frac{1}{9}$	\overline{z} $\overline{16}$
$y^2 = 225$	$z^2 = 400$
$y = \sqrt{225}$	$z = \sqrt{400}$
y = 15	z = 20