GEOMETRY UNIT 8

8-4: SPECIAL RIGHT TRIANGLES

WARM-UP

Find the value of \mathbf{x} in these right triangles.

3.)

SPECIAL RIGHT TRIANGLES
Content Objective: Students will be able to solve for missing side lengths in special right triangles.

Language Objective: Students will be able to name the special right triangles, as well as label their specific parts.

$$
45^{\circ}-45^{\circ}-90^{\circ} \text { THEOREM }
$$

Theorem 8-6: In a $45^{\circ}-45^{\circ}-90^{\circ}$ right triangle, the hypotenuse is $\sqrt{2}$ times as long as a leg.

Hypotenuse

$$
c=a \sqrt{2} \quad \text { or } \quad c=b \sqrt{2}
$$

$45^{\circ}-45^{\circ}-90^{\circ}$ EXAMPLES

Find the value of x.
1.)

Hypotenuse
2.)

Solution:

$$
\begin{gathered}
8=\mathrm{x} \sqrt{2} \\
x=\frac{8}{\sqrt{2}} \\
x=\frac{8}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}}=\frac{8 \sqrt{2}}{2} \\
x=4 \sqrt{2}
\end{gathered}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ THEOREM

Theorem 8-7: In a $30^{\circ}-60^{\circ}-90^{\circ}$ right triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as a shorter leg.

Hypotenuse

$$
c=2 a
$$

Longer Leg

$$
b=a \sqrt{3}
$$

Shorter Leg

$30^{\circ}-60^{\circ}-90^{\circ}$ EXAMPLES

3.) Find the values of x and y

For x :

$$
\begin{gathered}
x=6 * 2 \\
x=12
\end{gathered}
$$

For y:

$$
\begin{gathered}
y=6 * \sqrt{3} \\
y=6 \sqrt{3}
\end{gathered}
$$

$30^{\circ}-60^{\circ}-90^{\circ}$ EXAMPLES

4.) Find the values of x and y

For x :

$$
\begin{gathered}
8=\mathrm{x} \sqrt{3} \\
x=\frac{8}{\sqrt{3}} \\
x=\frac{8}{\sqrt{3}} * \frac{\sqrt{3}}{\sqrt{3}}=\frac{8 \sqrt{3}}{3}
\end{gathered}
$$

Hypotenuse
For y:

$$
\begin{gathered}
y=x * 2 \\
y=2 * \frac{8 \sqrt{3}}{3} \\
y=\frac{16 \sqrt{3}}{3}
\end{gathered}
$$

WARM-UP: REVIEWING THE TRIANGLES

Label the parts of each triangle, then give the equations associated with them.

Equation(s):

Hypotenuse (c)

$$
=\operatorname{Leg}(a \text { or } b) * \sqrt{2}
$$

Equation(s):
Hypotenuse (c) $=$ Shorter Leg (a) *2
Longer Leg $(b)=$ Shorter leg $(a) * \sqrt{3}$

RATIO OF SIDES

In Closing, the sides of each of the special right triangles can be put into this form

$$
45^{\circ}-45^{\circ}-90^{\circ}
$$

Side Ratio:

$$
a: b: c \rightarrow 1: 1: \sqrt{2}
$$

Side Ratio:

$$
a: b: c \rightarrow 1: \sqrt{3}: 2
$$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
1.

v
Longer Leg

For u:

$$
\begin{array}{r}
u=2 * 2 \\
\boldsymbol{u}=\mathbf{4}
\end{array}
$$

For v:

$$
\begin{gathered}
v=\sqrt{3} * 2 \\
v=2 \sqrt{3}
\end{gathered}
$$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
2.

For b:
Legs are \cong in a $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle.
Thus, $\quad b=2 \sqrt{2}$

For a:

$$
\begin{gathered}
a=\sqrt{2} * 2 \sqrt{2} \\
a=2 * \sqrt{2} * \sqrt{2} \\
a=2 * 2=4
\end{gathered}
$$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
3.

Hypotenuse

For v:

$$
\begin{aligned}
8 \sqrt{2} & =\sqrt{2} * v \\
v & =\frac{8 \sqrt{2}}{\sqrt{2}} \\
v & =\mathbf{8}
\end{aligned}
$$

For u:
Legs are \cong in a $45^{\circ}-45^{\circ}-90^{\circ}$
Triangle.
Thus,
$\mathbf{u}=\mathbf{8}$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
4.
$11 \sqrt{3}$ Longer Leg

For b:

$$
\begin{gathered}
11 \sqrt{3}=\sqrt{3} * b \\
b=\frac{11 \sqrt{3}}{\sqrt{3}} \\
v=11
\end{gathered}
$$

For a:

$$
\begin{gathered}
a=2 * 11 \\
\boldsymbol{a}=\mathbf{2 2}
\end{gathered}
$$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
5.

Hypotenuse

For y:

$$
\begin{gathered}
8 \sqrt{5}=2 * y \\
y=\frac{8 \sqrt{5}}{2} \\
y=4 \sqrt{5}
\end{gathered}
$$

For X:

$$
\begin{gathered}
x=\sqrt{3} * 4 \sqrt{5} \\
x=4 \sqrt{3 * 5} \\
x=4 \sqrt{15}
\end{gathered}
$$

EXAMPLES - BOTH TRIANGLES

Find the missing side lengths. Leave answers as simplified radicals (if necessary).
6.

Hypotenuse

For x:

$$
\begin{aligned}
2 \sqrt{6} & =\sqrt{2} * x \\
x & =\frac{2 \sqrt{6}}{\sqrt{2}} \\
x & =2 \sqrt{\frac{6}{2}} \\
x & =2 \sqrt{3}
\end{aligned}
$$

For y:
Legs are \cong in a $45^{\circ}-45^{\circ}-90^{\circ}$ Triangle.

Thus,

$$
y=2 \sqrt{3}
$$

