GEOMETRY UNIT

8-5: The Tangent Ratio

TRIGONOMETRY

- The word Trigonometry comes from the Greek words meaning "Triangle Measure."
- This material can be applied to any kind of triangle...
- But we will only be using this for right triangles.

TANGENT

- From the same triangle, only one acute angle $(<A)$ is marked.
- The leg across from the angle is known as the Opposite Leg and the leg attached to the angle is known as the Adjacent Leg.
- The first of our 3 ratios is known as the Tangent Ratio.

Tangent of $<A=\frac{\text { leg opposite }<A}{\text { leg adjacent to }<A}$

TANGENT EXAMPLES

- From the given triangle, find $\tan X$ and $\tan Y$.

Tangent of $<X=\frac{\text { leg opposite }<X}{\text { leg adjacent to }<X}$
$\frac{12}{5}$

Tangent of $<Y=\frac{\text { leg opposite }<Y}{\text { leg adjacent to }<Y}$

$\frac{5}{12}$

SINE

- From the same triangle, only one acute angle $(<A)$ is marked.
- Our next two ratios involve one of the legs, as well as the hypotenuse.
- This next ratio is known as the Sine Ratio.

Sine of $<A=\frac{\text { leg opposite }<A}{\text { hypotenuse }}$

SINE EXAMPLES

- From the given triangle, find $\sin X$ and $\sin Y$.

$$
\sin X=\frac{\text { leg opposite }<X}{\text { hypotenuse }}
$$

$$
\frac{8}{17}
$$

$$
\sin Y=\frac{\text { leg opposite }<Y}{\text { hypotenuse }}
$$

15
17

COSINE

- From the same triangle, only one acute angle $(<A)$ is marked.
- The last ratio is known as the Cosine Ratio.

Cosine of $<A=\frac{\text { leg adjacent to }<A}{\text { hypotenuse }}$

COSINE EXAMPLES

- From the given triangle, find $\cos X$ and $\cos Y$.
$\cos X=\frac{\text { leg adjacent to }<X}{\text { hypotenuse }}$

$\cos Y=\frac{\text { leg adjacent to }<Y}{\text { hypotenuse }}$
15
$\frac{8}{17}$

TRIG RATIOS

-Content Objective: Students will be able to solve for angles and sides of right triangles using the trig ratios of Sine, Cosine, and Tangent
-Language Objective: Students will be able to write trigonometric ratios using sides and angles of right triangles.

WARM-UP

- Find $\operatorname{Sin} X, \operatorname{Cos} Y, \operatorname{Tan} X$, and $\operatorname{Tan} Y$
- Solution:
${ }^{\square} \sin X=\frac{5}{23}$
${ }^{\square} \cos Y=\frac{5}{23}$
$\square \tan X=\frac{5}{7 \sqrt{7}}=\frac{5 \sqrt{7}}{49}$

$\square \tan Y=\frac{7 \sqrt{7}}{5}$

PUTTING IT ALL TOGETHER

- In trigonometry, there is a saying that helps with memorizing how to set up the ratios of Sine, Cosine and Tangent.
- See if you can get it from this:

PUTTING IT ALL TOGETHER

$\xrightarrow[\text { SOH }]{\text { Sine: } O_{\text {pposite }}: H_{\text {ypotenuse }}}$
$\underbrace{\text { Cosine: } A_{\text {djacent: }} H_{\text {ypotenuse }}}_{\text {CAH }}$
Tangent: Opposite:Adjacent

PUTTING IT ALL TOGETHER

- All together, we have...

SOH-CAH-TOA

TRIG WITH ANGLES

- Trig Ratios can also be used to find the values of specific angles.
- For example, you can write $\boldsymbol{\operatorname { t a n }} \mathbf{1 0}^{\circ}$ to represent the tangent of any angle of degree measure 10.
- You can find these values by using either a calculator, or a table of values.
- (i.e. there is a table of trig values on page 311 of your textbook).

Table of Trigonometric Ratios

Angle	Sine	Cosine	Tangent	Angle	Sine	Cosine	Tamgent
$1{ }^{\circ}$.O175	.9998	.O175	46°	.7193	. 6947	1.0355
$2{ }^{\circ}$.O349	.9994	.O349	470	.7314	. 6820	1.0724
3°	.0523	. 9986	.0524	48°	.7431	. 6691	1.1106
$4{ }^{\circ}$.0698	.9976	.0699	49°	.7547	.6561	1.1504
5°	.0872	. 9962	.0875	50°	. 7660	. 6428	1.1918
6°	. 1045	.9945	. 1051	51°	.7771	. 6293	1.2349
$7{ }^{\circ}$.1219	.9925	.1228	52°	.7880	.6157	1.2799
8°	.1392	.9903	. 1405	53°	. 7986	. 6018	1.3270
19°	-1564	.9877	. 1584	540° 55	.8090	.5878 .5736	1.3764
$11^{\circ}{ }^{\circ}$.1736	-9848	.1763	55°	.8192	-5736	1.4826
12°	.2079	.9781	. 2126	57°	. 83887	. 5446	1.5399
13°	.2250	.9744	. 23009	58°	.8480	.5299	1.6003
14°	. 2419	.9703	. 2493	59°	. 8572	5150	1.6643
15°	.2588	.9659	. 2679	60°	. 8660	. 5000	1.7321
16°	.2756	.9613	.2867	61°	. 8746	.4848	1.8040
17°	. 2924	.9563	. 3057	62°	. 8829	.4695	1.8807
18°	. 3090	.9511	. 3249	63°	. 8910	. 4540	1.9626
19°	. 3256	.9455	. 3443	64°	.8988	. 4384	2.0503
20°	.3420	-9397	3640	65°	.9063	. 4226	2.1445
21°	. 3584	9336	.3839	66°	.9135	. 4067	2.2460
22°	.3746	6272	. 4040	67°	.9205	-3907	2.3559
23°	.3907	. 92005	.4245	68°	.9272	.3746	2.4751
24°	.4067	.9135	.4452	69°	.9336	. 3584	2.6051
25°	.4226	.9063	.4663	70°	.9397	. 3420	2.7475
26°	.4384	.8988	. 4877	77°	.9455	-3256	2.9042
27°	.4540	.8910 8829	.5095 .5317	72°	.9511	. 2090	3.0777 3.2709
28°	.4695	.8810 .8746	. 5543	74°	. 9613	.2756	3.4874
30°	.5000	.8660	.5774	75°	.9659	.2588	3.7321
31°	.5150	.8572	. 6009	76°	.9703	. 2419	4.0108
32°	.5299	. 8480	. 6249	77°	.9744	.2250	4.3315
33°	.5446	.8387	. 6494	78°	.9781	. 2079	4.7046
34°	. 5592	.8290	.6745	79°	.9816	. 1908	5.1446
35°	.5736	.8192	.7002	80°	.9848	. 1736	5.6713
36°	. 5878	. 8090	.7265	81°	.9877	.1564	6.3138
37°	. 6018	. 79886	.7536	$83^{\circ}{ }^{\circ}$.9903	. 1392	7.1154
38°	.6157	.7880	.7813	84°	.99945	.1219	8.1443
$39^{\circ}{ }^{\circ}$.6293	.7771 .7660	.88981	85°	.9962	.0872	11.4301
41°	.6561	.7547	.8693	86°	.9976	.0698	14.3007
42°	. 6691	.7431	.9004	87°	.9986	.0523	19.0811
43°	. 6820	.7314	.9325	88°	.9994	.0349	28.6363
44°	. 6947	.7193	.9657	89°	.9998	.0175	57.2900
45°	.7071	.7071	1.000O				

TRIG WITH ANGLES

- Examples:
1.) $\tan 10^{\circ} \approx \mathbf{0 . 1 7 6 3}$
5.) $\sin 45^{\circ} \approx \mathbf{0 . 7 0 7 1}$
2.) $\sin 25^{\circ} \approx 0.4226$
6.) $\cos 30^{\circ} \approx \mathbf{0 . 8 6 6 0}$
3.) $\cos 44^{\circ} \approx \mathbf{0 . 7 1 9 3}$
4.) $\tan 60^{\circ} \approx \mathbf{1 . 7 3 2 1}$

TRIG WITH ANGLES

- Using the trig values of specific angles is helpful for finding missing sides of a triangle.
- Example: Find the value of x.

Solution:

$$
\begin{gathered}
\tan 56^{\circ}=\frac{x}{32} \\
x=32 * \tan 56^{\circ} \\
x=32 * 1.4826
\end{gathered}
$$

$$
y=47.4432 \quad \text { or } \quad y \approx 47.4
$$

You get this decimal by either checking the table, or just plugging $\tan 56^{\circ}$ into your calculator. opposite
the 56°

TRIG WITH ANGLES

- Now you try
- Example: Find the values of x and y.

Solution (For x):

$$
\begin{gathered}
\sin 67^{\circ}=\frac{x}{120} \\
x=120 * \sin 67^{\circ} \\
x=120 * 0.9205
\end{gathered}
$$

$x=110.46$
or $x \approx 110$

TRIG WITH ANGLES

- Now you try
- Example: Find the values of x and y.

Solution (For y):

$$
\begin{gathered}
\cos 67^{\circ}=\frac{y}{120} \\
y=120 * \cos 67^{\circ} \\
y=120 * 0.3907
\end{gathered}
$$

$$
y=46.884
$$

or
$y \approx 47$

WHAT IF I DON'T GIVE YOU THE ANGLE?

- Find the measure of n to the nearest integer.

Solution:

$$
\begin{aligned}
& \sin n^{\circ}=\frac{22}{40} \\
& \sin n^{\circ}=0.5500
\end{aligned}
$$

From here, you have a choice:
Either look for 0.5500 (or the closest value to it) on the table...
Or let your calculator do it the following way:
1.) Go to the button that reads " 2 nd"
2.) Hit the "sin" button. If it went well, then
 " $\sin ^{-1}$ (" should appear on the screen.
3.) Put the decimal value (0.5500) in the and press "enter"
4.) Round your answer to the nearest integer, and there you go.

WHAT IF I DON'T GIVE YOU THE ANGLE?

- If all went well, you should have
- $\sin ^{-1}(0.5500)=33.3670 \approx 33$

FINDING ANGLES

- This same process can be applied when solving for angles using Cosine and Tangent.
- Give it a try with these examples: Find the value of x.
-1.) $\cos x^{\circ}=0.6678$
$\cos ^{-1}(0.6678)=48.1025 \approx 48$
-2.) $\tan x^{\circ}=0.3246$
Note: When you have to divide to get the decimal, it is best to round to 4 decimal places.
$\tan ^{-1}(0.3246)=17.9834 \approx 18$

FINAL CHECK

- Solve the value of x using trig ratios.
1.)

Solution:

$$
\begin{gathered}
\sin 43^{\circ}=\frac{x}{22} \\
x=22 \times \sin 43^{\circ} \\
x \approx 15.004
\end{gathered}
$$

FINAL CHECK

- Solve the value of x using trig ratios.
2.)

Solution:

$$
\begin{aligned}
& \cos 63^{\circ}=\frac{23}{x} \\
& x=\frac{23}{\cos 63^{\circ}} \\
& x \approx 50.6619
\end{aligned}
$$

FINAL CHECK

- Solve the value of x using trig ratios.
3.)

Solution:
$\tan 38^{\circ}=\frac{20}{x}$
$x=\frac{20}{\tan 38^{\circ}}$
$x \approx 25.5988$

FINAL CHECK

- Solve the value of x using trig ratios.
4.)

*Just pretend "?" is x.
Solution:

$$
\begin{gathered}
\tan x^{\circ}=\frac{8}{20} \\
\tan x^{\circ}=0.4 \\
x=\tan ^{-1}(0.4)=21.8014 \approx 22
\end{gathered}
$$

