GEOMETRY UNIT 9

9-4: ARCS AND CHORDS

ARCS AND CHORDS

- Content Objective: Students will be able to find the measures of arcs and chords in circles.
- Language Objective: Students will be able to identify properties of arcs and chords from theorems and examples.

ARCS AND CHORDS

- In $\odot 0, \overline{R S}$ cuts off two arcs, minor arc $\widehat{R S}$, and major $\operatorname{arc} R \widehat{R T S}$.
- From the two arcs, we say that the minor arc, $\widehat{R S}$, is called the arc of $\overline{R S}$.

ARCS AND CHORDS

Theorem 9-4: In the same circle, or in congruent circles:
(1) Congruent arcs have congruent chords;
(2) Congruent chords have congruent arcs.

For $\odot 0$, we have the two conditions:
(1) If: $m \widehat{C R} \cong m \widehat{H D}$
(2) If: $\overline{C R} \cong \overline{H D}$

ARCS AND CHORDS

Theorem 9-5: A diameter that is perpendicular to a chord bisects the chord and its arc.

Given: $\odot 0 ; \overline{B E} \perp \overline{A C}$

Then: $\overline{A R} \cong \overline{R C} ; \widehat{A E} \cong \widehat{C E}$

ARCS AND CHORDS

Theorem 9-6: In the same circle, or in congruent circles:
(1) Chords equally distant from the center are congruent;
(2) Congruent chords are equally distant from the center.

With $\overline{A V}$ and $\overline{U V}$ as the respective distances between $\overline{B T}$ and $\overline{S P}$;
(1) If $A V=U V$

Then $\overline{B T} \cong \overline{S P}$
(2) If $\overline{B T} \cong \overline{S P}$

Then $A V=U V$

PRACTICE USING THE THEOREMS

- Find the measures of x and y.
1.)

Diameter $\overline{C D}$ bisects chord $\overline{A B}$, thus

$$
x=5
$$

By theorem 9-5
$\overline{A B} \cong \overline{E F}$, so $\mathbf{m} \widehat{A B}=\mathbf{8 6}$ By theorem 9-4

Diameter $\overline{C D}$ bisects chord $\overline{A B}$, so
$y=43$
By theorem 9-5

PRACTICE USING THE THEOREMS

2.) Find the length of chord $\overline{A B}$

Using a Pythagorean triple, we can show that

$$
A P=4
$$

Also, $\overline{O P}$ bisects $\overline{A B}$, thus

$$
A B=8
$$

By theorem 9-5

PRACTICE THE RULES

- Find the value of x.

$\overline{A U}$ bisects $\overline{S P}$, thus

$$
S P=6
$$

By theorem 9-5

This makes $\overline{\boldsymbol{S P}} \cong \overline{\boldsymbol{B T}}$
Thus

$$
x=4
$$

By theorem 9-6

FINAL PRACTICE

- Find the measure(s) given.

Find $O P$ if $A B=\mathbf{2 4}$
Since $A B=24$, then

$$
P B=12
$$

By Theorem 9-5
You can use the Pythagorean Theorem, or a triple, which will result in

$$
O P=5
$$

FINAL PRACTICE

- Find the measure(s) given.

Find $\mathbf{m} \widehat{C D}$
Since $\overline{\boldsymbol{B C}} \cong \overline{\boldsymbol{C D}}$, then their arcs must also be \cong, by theorem 9-4.

Since $m \widehat{B D}=90$, then

$$
\begin{aligned}
m \widehat{C D} & =\frac{1}{2} \times 90 \\
& =45
\end{aligned}
$$

FINAL PRACTICE - CHALLENGE PROBLEM

- Find the measure(s) given.

If $O M=O N=7$ and $C M=6$, find

- $D M=6$
- $E F=12$
- $D O=\sqrt{85}$
- $E O=\sqrt{85}$

