Geometry Unit 9

9-5 Inscribed Angles in Circles

Inscribed Angles in Circles

- Content Objective: Students will be able to identify inscribed angles and their intercepted arcs in circles.
- Language Objective: Students will be able to solve for the missing measures of inscribed angles and their intercepted arcs in a variety of problems.

Inscribed Angles in a Circle

- An Inscribed Angle is an angle whose vertex is on a circle and whose sides are chords of the circle.
- The arc created by the chords is known as the Intercepted Arc.

Intercepted Arc
<1 is the Inscribed Angle $\widehat{A B}$ is the Intercepted Arc

Intercepted Arc
<2 is the Inscribed Angle
$\widehat{C E D}$ is the Intercepted Arc

Warm-up: 9-5 Practice

1.) Name each Inscribed Angle, along with its intercepted arc?

2.) What do you notice about the measure of $<Y$ and the measure of its Intercepted Arc?

Theorems For Inscribed Angles

- Theorem 9-7: The measure of an inscribed angle is equal to half the measure of its intercepted arc.

Equation:

Inscribed Angle $=\frac{1}{2} \times$ Intercepted Arc Example:
If $m \widehat{A C}=120^{\circ}$
Then $m<A B C=\frac{1}{2} m \widehat{A C}$

$$
=\frac{1}{2} \times 120=\mathbf{6 0}^{\circ}
$$

Example:
If $m<A B C=55^{\circ}$
Then $m \widehat{A C}=2 \times m<A B C$

$$
=2 \times 55=\mathbf{1 1 0}^{\circ}
$$

Theorems For Inscribed Angles

- Theorem 9-8: The measure of an angle formed by a chord and a tangent is equal to half the measure of the intercepted arc.

If: $\overline{T P}$ is a tangent $\widehat{A T}$ is the intercepted arc

Then: $m<A T P=\frac{1}{2} \widehat{A T}$

Example:
If $m \widehat{A T}=140^{\circ}$

$$
\begin{aligned}
m< & A T P=\frac{1}{2} \widehat{A T} \\
& =\frac{1}{2} \times 140 \\
& =\mathbf{7 0}^{\circ}
\end{aligned}
$$

Corollaries For Inscribed Angles

- Corollary 1: If two inscribed angles intercept the same arc, then the angles are congruent.
$<1 \cong<2$

Intercepted Arc

Corollaries For Inscribed Angles

- Corollary 2: An angle inscribed in a semicircle is a right angle.

If: $\overline{M X N}$ is a semicircle.
Then $:<X$ is a right angle.

Corollaries For Inscribed Angles

- Corollary 3: If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

Given: Quad HEFG
$<H$ is supp. to $<F$
$<E$ is supp. to $<G$

Final Practice

- Use the theorems and corollaries given to solve for the variables given.

For $x:$

$$
\begin{aligned}
x= & \frac{1}{2} \times 100 \\
& =\mathbf{5 0}^{\circ}
\end{aligned}
$$

For y :

$$
\begin{aligned}
y= & \frac{1}{2} \times 120 \\
& =\mathbf{6 0}^{\circ}
\end{aligned}
$$

For \mathbf{z}

$$
\begin{array}{r}
70=\frac{1}{2} \times z \\
z=70 \times 2 \\
=\mathbf{1 4 0}^{\circ}
\end{array}
$$

Final Practice

- Use the theorems and corollaries given to solve for the variables given.

For x :

This will use Corollary 1

$$
\begin{aligned}
x & =\frac{1}{2} \times 76 \\
& =38^{\circ}
\end{aligned}
$$

For y:

$$
\begin{aligned}
y & =\frac{1}{2} \times 76 \\
& =\mathbf{3 8}^{\circ}
\end{aligned}
$$

Final Practice

- Use the theorems and corollaries given to solve for the variables given.

This will use Corollary 3

For x :

$$
\begin{gathered}
110+x=180 \\
\boldsymbol{x}=\mathbf{7 0}^{\circ}
\end{gathered}
$$

For y :
$85+y=180$

$$
y=95^{\circ}
$$

Final Practice

- Use the theorems and corollaries given to solve for the variables given.

For w:

$$
\begin{gathered}
w=\frac{1}{2} \times 150 \\
\boldsymbol{w}=75^{\circ}
\end{gathered}
$$

For x :
 $x=180-40-75$

$$
x=65^{\circ}
$$

Final Practice

- Use the theorems and corollaries given to solve for the variables given.

For y :

$$
\begin{aligned}
& y=2 \times 65 \\
& \boldsymbol{w}=\mathbf{1 3 0}^{\circ}
\end{aligned}
$$

For \mathbf{z} :
Intercepted Arc

$$
\begin{gathered}
=360-150-130 \\
=80 \\
z=\frac{1}{2} \times 80
\end{gathered}
$$

$$
\mathbf{z}=40^{\circ}
$$

