Geometry Unit 9

(c) \cos

9-6: Other Angles of Circles

Other Angles of Circles

sontent Objective: Students will be able to identify interior and exterior angles created by chords, secant, and tangent lines in circles.
soLanguage Objective: Students will be able to write equations and solve for the measures of interior and exterior angles in circles.

Interior Angles

so Theorem 9-9:The measure of an angle formed by two chords that intersect inside a circle is equal to half the sum of the measures of the intercepted arcs.

Equation:

$$
m<1=\frac{1}{2}(m \widehat{A C}+m \widehat{B D})
$$

Interior Angles Practice

∞ Find the measure of x.
8 1.)

$$
\begin{gathered}
x=\frac{1}{2}(40+30) \\
x=\frac{1}{2} \times 70 \\
x=35
\end{gathered}
$$

Interior Angles Practice

∞ Find the measure of x.
so 2.)

$$
\begin{gathered}
x=\frac{1}{2}(140+135) \\
x=\frac{1}{2} \times 275 \\
\boldsymbol{x}=\mathbf{1 3 7 . 5}
\end{gathered}
$$

Interior Angles Practice

∞ Find the measure of x.
so 3.)

$$
\begin{gathered}
75=\frac{1}{2}(x+100) \\
150=x+100 \\
\boldsymbol{x}=\mathbf{5 0}
\end{gathered}
$$

Fxxterior Angles

so Theorem 9-10: The measure of an angle formed by two secants, two tangents, or a secant and a tangent drawn from a point outside the circle is equal to half the difference of the measures of the intercepted arcs.

Fxxterior Angles

so Theorem 9-10: Case 1: Two Secants

Axterior Angles

so Theorem 9-10: Case 2: Two Tangents

Fixicrior Angles

so Theorem 9-10: Case 3: A secant and a Tangent

$$
m<3=\frac{1}{2}(m \widehat{A C}-m \widehat{B C})
$$

Pxiterior Angles Practice

∞ Find the measure of x.
so 1.)

$$
\begin{gathered}
x=\frac{1}{2}(120-40) \\
x=\frac{1}{2} \times 80 \\
x=40
\end{gathered}
$$

Pxiterior Angles Practice

∞ Find the measure of x.
so 3.)

$$
\begin{gathered}
30=\frac{1}{2}(x-70) \\
60=x-70 \\
\boldsymbol{x}=\mathbf{1 3 0}
\end{gathered}
$$

Pxiterior Angles Practice

$s \infty$ Find the measure of x.
so 2.)

$$
\begin{gathered}
x=\frac{1}{2}(260-100) \\
x=\frac{1}{2} \times 160 \\
x=\mathbf{8 0}
\end{gathered}
$$

Mixed Practice

solve for the missing value(s).

$$
\begin{gathered}
120=\frac{1}{2}(60+m) \\
240=60+m \\
\boldsymbol{m}=\mathbf{1 8 0}
\end{gathered}
$$

Mixed Practice

so Solve for the missing value(s).

Mixed Practice

so Solve for the missing value(s).

$$
\begin{gathered}
58=\frac{1}{2}(360-a-a) \\
58=\frac{1}{2}(360-2 a) \\
58=180-a \\
a=180-58 \\
\boldsymbol{a}=122
\end{gathered}
$$

Mixed Practice

solve for the missing value(s).

$$
\begin{aligned}
& \text { For } \mathbf{c}: \\
& \begin{array}{c}
c=\frac{1}{2}(175+53) \\
c=\frac{1}{2}(228) \\
c=114
\end{array}
\end{aligned}
$$

For d:

$$
\begin{gathered}
d=180-114 \\
\boldsymbol{d}=\mathbf{6 6}
\end{gathered}
$$

Mixed Practice

solve for the missing value(s).

For x :

$$
\begin{gathered}
x=\frac{1}{2}(70+50) \\
x=\frac{1}{2}(120) \\
x=\mathbf{6 0}
\end{gathered}
$$

For y :

$$
\begin{gathered}
y=\frac{1}{2}(70-26) \\
y=\frac{1}{2} \times 44 \\
y=\mathbf{2 2}
\end{gathered}
$$

Mixed Practice

∞ Solve for the missing value(s).

For x :

$$
\begin{gathered}
100=\frac{1}{2}(x+66) \\
200=x+66 \\
\boldsymbol{x}=\mathbf{1 3 4}
\end{gathered}
$$

For y :

$$
40=\frac{1}{2}(134-y)
$$

$$
80=134-y
$$

$$
y=134-80
$$

$$
y=54
$$

