Geometry Unit 9

9-7: Lengths of Segments in Circles

Warm-up

Identify the type of line, arc or angle that is made based off the picture and the notation given.

- 1.) \overline{AD} Diameter 8.) \widehat{CDA} Major Arc
- 9.) \overrightarrow{FC} Tangent 2.) *BE* Chord G 3.) \overrightarrow{BE} Secant 10.) < *DAG* Inscribed 4.) \widehat{BE} Minor Arc Angle D A 5.) OC Radius O 6.) < COD Central Angle B 7.) DCA Semicircle

- <u>Content Objective</u>: Students will be able to identify segments created by chords, secants, and tangents inside and outside of circles.
- Language Objective: Students will be able to solve for the measures of segments created by chords, secants, and tangents by using equations.

- In the figure below, you see that \overline{AB} and \overline{CD} intersect at P in the circle.
- We call \overline{AP} and \overline{PB} the *segments of chord* \overline{AB} .
- Similarly, we would call \overline{CP} and \overline{PD} the segments of chord \overline{CD} .

• <u>Theorem 9-11</u>: When two chords intersect inside a circle, the of product the segments of one chord equals the product of the segments of the other chord.

Given: \overline{AB} and \overline{CD} intersect at P

Then: $f \times h = m \times n$

- <u>Theorem 9-12</u>: When two secant segments are drawn to a circle from an external point,
- the product of one secant segment and its external segment equals the product of the other secant segment and its external segment.

Given: \overline{PA} and \overline{PC} drawn from P

Then:
$$f \times h = m \times n$$

- **Theorem 9-13**: When a secant segment and a tangent are drawn to a circle from an external point,
- the product of the secant segment and its external segment is equal to the square of the tangent segment.

Given: \overline{PA} and \overline{PC} drawn from P

Then:
$$f \times h = m^2$$

Examples

Chords, Secants, and Tangents are shown. Find the value of x.

Using Theorem 9-1, we have $x \times 3x = 6 \times 8$ $3x^2 = 48$ $x^2 = 16$ x = 4

Examples

Chords, Secants, and Tangents are shown. Find the value of x.

Using **Theorem 9-2**, we have $x \times 8 = 12 \times 4$ 8x = 48

$$x = 6$$

Examples

Chords, Secants, and Tangents are shown. Find the value of x.

Using Theorem 9-3, we have $x^2 = 4 \times 9$ $x^2 = 36$ x = 6

Chords, Secants, and Tangents are shown. Find the value of x.

2.)

Solution $x \times x = 9 \times 16$ $x^{2} = 144$ x = 12

Chords, Secants, and Tangents are shown. Find the value of x.

Solution $(x + 4) \times 4 = 8 \times 5$ 4x + 16 = 40 4x = 24 x = 6

Chords, Secants, and Tangents are shown. Find the value of x.

Solution $x \times x = 9 \times 3$ $x^2 = 27$ $x = 3\sqrt{3}$

Chords, Secants, and Tangents are shown. Find the value of x.

Solution $x \times 6 = 8 \times 3$ 6x = 24 x = 4

