Geometry Unit 5

Ways to Prove Triangles Are Congruent

Other Ways to Prove Triangles Congruent

- Content Objective: Students will be able to use postulates and theorems to prove that triangles are congruent.
- Language Objective: Students will be able to write congruence statements using the AAS and HL Theorems.

We started with 3 Ways to prove Triangles Congruent

- SSS
- SAS

- ASA

AAS Theorem

- Theorem 4-3: AAS Theorem

If two angles and a non-included side of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent.

Given: $<B \cong<E$;

$$
<C \cong<F ; \overline{A C} \cong \overline{D F}
$$

Prove: $\triangle A B C \cong \triangle D E F$

Plan for Proof:

- You can do that by using the following fact: two Angles of $\triangle A B C$ are congruent to two Angles of $\triangle D E F$.

AAS Theorem - The Proof

Given: $<B \cong<E$;

$$
<C \cong<F ; \overline{A C} \cong \overline{D F}
$$

Prove: $\triangle A B C \cong \triangle D E F$

Statements
Reasons
1.) $<B \cong<E ;<C \cong<F ; \overline{A C} \cong \overline{D F}$
1.) Given
2.) $<\mathrm{A} \cong<\mathrm{D}$
2.) If $2<$'s of 1Δ are \cong to $2<' s$ of another Δ, then the $3^{\text {rd }}<$'s are \cong.
3.) $\triangle A B C \cong \triangle D E F$
3.) ASA Postulate

Overlapping Triangles

- Suppose you have the following problem:

Given: $\overline{G J} \cong \overline{G K}$;

$$
<H \cong<\mathrm{I}
$$

Prove: $\Delta G H J \cong \Delta G I K$

How would you solve this?
...Separate the Triangles!

Overlapping Triangles

- Separating the two different triangles, we now have $\Delta G H J$ and $\Delta G I K$ as such:

- You can also label $<G \cong<G$ because it is the exact the same angle from the combined diagram.
- Therefore, $\Delta G H J \cong \triangle G I K$ by the AAS Theorem.

Right Triangles

- The sides of a right triangle named as such:
- The side opposite the right angle is known as the Hypotenuse
- The other two sides are known as the Legs

HL Theorem

- Theorem 4-4: HL Theorem

If the hypotenuse and a leg of one right triangle are congruent to the corresponding parts of another right triangle, then the triangles are congruent.

Given: $<C$ and $<F$ are right $<^{\prime} \mathrm{s}$; $\overline{A B} \cong \overline{D E}$ (Hypotenuse); $\overline{B C} \cong \overline{E F}(\mathrm{Leg})$
Prove: $\triangle A B C \cong \triangle D E F$

We will not be proving this one

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the HL Theorem because
Between the two right triangles, we have the corresponding hypotenuse and legs congruent to one another.

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the AAS Theorem because
Between the two triangles, we have two angles and their included sides congruent to one another.

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the ASA Postulate because
Between the two triangles, we have two angles and their included sides congruent to one another.

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the SAS Postulate because
Between the two triangles, we have two angles and their included sides congruent to one another.

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the $\mathbf{S S S} \xlongequal{\text { Postulate }}$ because
Between the two triangles, we have two angles and their included sides congruent to one another.

Proving Triangles Congruent

- State which postulate, or theorem, you can use to prove that these triangles are congruent. Explain using the sentence provided.

Given: $<2 \cong<3$;
$<1 \cong<4$

- These triangles are congruent by the AAS

Theorem

