Geometry: Unit 2

Angles

Warmup - Segment Review

- Refer to the diagram and complete the statement and solve the problem.

- $1 . \overrightarrow{B G}$ is the segment \qquad of $\overline{F H}$ passing through \qquad A creating \qquad segments $A F$ and $A H$.
- 2. Using the above statement, Find the values of $A F$ and $A H$ if $F H=42$.

Angles

- Content Objective: Students will be able to complete statements and answer problems related to angles using the Angle Addition Postulate.
- Language Objective: Students will be able to state and use the Angle Addition Postulate to solve problems.

Angle Reminder

- Here is a reminder of the definitions, along with visual examples, of an angle, discussed in the previous lecture.

- Additional information: The two rays that make the angle are known as the sides.

Different Types of Angles

- Angles are classified according to their measures (in degrees for us).
- Acute Angle: Measures less than 90°
- Right Angle: Measure of exactly 90°
- Obtuse Angle: Measures larger then 90°, but less than 180°
- Straight Angle: Measure of exactly 180°

Angle Congruence

- Congruent Angles are angles that have equal measures. In the diagram below you can see that both $<\boldsymbol{A}$ and $<\boldsymbol{B}$ have angle measures of 40°. So we can write
$\boldsymbol{m}<\boldsymbol{A}=\boldsymbol{m}<\boldsymbol{B}$ or $<\boldsymbol{A}=<\boldsymbol{B}$

Thus, we can write that the angles are congruent:

$$
<A \cong<B
$$

Adjacent Angles

Adjacent Angles are two angles in a plane that have a common vertex and an common side. Here are some examples:

- $<\mathbf{1}$ and $<\mathbf{2}$ are adjacent $\cdot<\mathbf{3}$ and <4 are no \dagger angles. adjacent angles.

Angle Bisector

- The bisector of an angle is the ray that divides the angle into two congruent, adjacent angles.
- In the given diagram,
$m<X Y W=m<W Y Z$,
$<X Y W \cong<W Y Z$,
$\overrightarrow{Y W}$ bisects $<X Y Z$.

Using Diagrams to Identify

- What can you conclude from the diagram shown below.
- All points shown are coplanar
- $\overleftrightarrow{A B}, \overrightarrow{B D}$, and $\overrightarrow{B E}$ intersect at B
- A, B, and C are Collinear.
- B is between A and C.
- $<A B C$ is a straight angle.
- D is in the interior of $<A B E$
- $\angle A B D$ and $\angle D B E$ are adjacent angles

C
C

Angle Addition Postulate

- Angle Addition Postulate:

1. If point B lies in the interior of $\angle A O C$, then

$$
m<A O B+m<B O C=m<A O C .
$$

2. If $A O C$ is a straight angle and B is any point not on $\overleftrightarrow{A C}$, then $m<A O B+m<B O C=180$.

Angle Addition Example

- Use the diagram: $m<M N K=75^{\circ}, m<M N L=3 x+15$, and $m<L N K=4 x-10$. Find the values of $\mathbf{x}, \boldsymbol{m}<\boldsymbol{M N L}$ and $\boldsymbol{m}<\boldsymbol{L N K}$.
- Using the Angle Addition Postulate, we can write
- $m<M N L+m<L N K=m<M N K$
- $(3 x+15)+(4 x-10)=75$
- $7 x+5=75$
- $7 x=70$
- $x=10$

Angle Addition Example Cont.

- We can now use the value of x we just found (10) to solve for $m<\boldsymbol{M N L}$ and $\boldsymbol{m}<\boldsymbol{L N K}$:
- $m<M N L=3 x+15$

$$
\begin{aligned}
& =3(10)+15 \\
& =30+15 \\
& =45
\end{aligned}
$$

and

- $m<L N K=4 x-10$

$$
\begin{aligned}
& =4(10)-10 \\
& =40-10 \\
& =30
\end{aligned}
$$

Exit Ticket

- Refer to the diagram and complete the statement and solve the problem.

- 1. If $\overrightarrow{A B}$ was the angle___ of $<E A F$, then $<E A B$ and $<B A F$ would be the \qquad angles.
- 2. Using the above statement, Find the values of $m<E A B$ and $m<B A F$ if $<E A F$ was a right angle.

