Algebra Review: Factoring By Grouping

Go to Kahoot.it
Work in your group.
Enter the Game pin that appears on the screen and choose your team nickname.

Objective: Students will be able to solve quadratic functions by factoring using the grouping method.

* Question: What is a Quadratic Function?

What＇s a Polynomial？

Recall

Here is a typical polynomial：
ーーーーーーーーーーーロー・

A quadratic is a polynomial that is written in the form " $a x^{2}+b x+c$ " where a, b, and c are all numbers.

Note that $b, c=0$, but $a \neq 0$. Can you tell me why?

Remember the standard form for a Quadratic: $a x^{2}+b x+c$

First, find the product $a \cdot c$ (or $a c$). Also, take note of the value of b (including the sign).

Next, find two numbers that multiply to get $a c$ and add into b or have a difference of b. It would be best to create a list of factors for $a c$.

Once you have identified the appropriate factors, you will replace " $b x$ " with a sum/difference of those factors, also multiplied by " x "

Next, factor completely by grouping (as we will see).

Practice Factoring:

Factor the following polynomial:

$$
x^{2}+5 x+6
$$

$a=1, b=5, c=6$
Thus, the factors of $a c$ that adds up to 5 are 2 and 3 .

List of factors of $a c$:
$\begin{array}{ll}-1,6 & 1+6= \\ -2,3 & 2+3=\end{array}$

Eíunple 1 Continued

This mean

$$
x^{2}+2 x+3 x+6
$$

Group the first two and the second two terms

$$
x^{2}+2 x+3 x+6
$$

From the groups, factor out their GCF

$$
x(x+2)+3(x+2)
$$

Notice that each group has a common term: " $x+2$ "
Factor that out from the group, and finally you have

$$
(x+2)(x+3)
$$

Factor the following polynomial:
$x^{2}-6 x+8$
Factors of $a c=8$
$a=1, b=-6 \quad, c=8$
The factors of 8 that add to make -6 are -2 and -4 .

Thus

$$
\begin{gathered}
x^{2}-2 x-4 x+8 \\
x(x-2)-4(x-2) \\
(x-2)(x-4)
\end{gathered}
$$

Next
Finally

Criticad Question

How do we know if the factors of $a c$ have to add up to b or must have a difference of b.

How to remember the rules:
Add to b :

- $a x^{2}+b x+c$
- $a x^{2}-b x+c$

Difference of b :

$$
\begin{aligned}
& a x^{2}+b x-c \\
& a x^{2}-b x-c
\end{aligned}
$$

Factor the Polynomial completely:

$$
x^{2}+3 x-18
$$

Add to b or Difference of b

Factors of $a c=$

Then

$$
\begin{gathered}
x^{2}-3 x+6 x-18 \\
x(x-3)+6(x-3) \\
(x-3)(x+6)
\end{gathered}
$$

DEy 2: Warnup

Factor the Following Polynomials

$$
x^{2}+9 x+18
$$

$x^{2}-12 x+35$
$x^{2}+5 x-24$

The rules are the same, just a little more work. Example:

$$
2 x^{2}+7 x+6
$$

$$
\begin{aligned}
& a=2 \\
& b=7 \\
& c=6
\end{aligned}
$$

Factors of $a c=12$ that add to make $b=7$ are

Next

$$
\begin{array}{r}
2 x^{2}+4 x+3 x+6 \\
2 x(x+2)+3(x+2) \\
(2 x+3)(x+2)
\end{array}
$$

Factor the Polynomial Completely

$$
5 x^{2}+13 x-6
$$

Factors of $a c=-30$ that have a difference of $b=13$ are

$$
\begin{array}{cc|c}
& \begin{array}{c}
a c \\
-3 x^{2}+15 x \\
5 x(x+3)-2 x-6 \\
(x+3)(5 x-2)
\end{array} & \begin{array}{c}
b \\
-1,30
\end{array} \\
-2,!5 & &
\end{array}
$$

Exit Jicket

Factor the Following Polynomials

1. $3 x^{2}+8 x+5$
2. $2 x^{2}-15 x-8$
