Algebra Review: Factoring By Grouping

Warmup

- Go to Kahoot.it
- Work in your group.
- Enter the Game pin that appears on the screen and choose your team nickname.

Factoring Polynomials

- Objective: Students will be able to solve quadratic functions by factoring using the grouping method.
- * Question: What is a Quadratic Function?

What's a Polynomial?

What's a Quadratic

• A quadratic is a polynomial that is written in the form " $ax^2 + bx + c$ " where a, b, and c are all numbers.

 Note that b, c = 0, but a ≠ 0. Can you tell me why?

How to Factor A Quadratic by Grouping

- Remember the standard form for a Quadratic: $ax^2 + bx + c$
- First, find the product a · c (or ac). Also, take note of the value of b (including the sign).
- Next, find two numbers that multiply to get ac and add into b or have a difference of b. It would be best to create a list of factors for ac.

How to Factor A Quadratic by Grouping

- Once you have identified the appropriate factors, you will replace "bx" with a sum/difference of those factors, also multiplied by "x"
- Next, factor completely by grouping (as we will see).

Practice Factoring: When a = 1

• Factor the following polynomial: $x^2 + 5x + 6$

List of factors of ac:
• 1,6
$$1+6=$$

• 2,3 $2+3=$

$$a = 1, b = 5, c = 6$$

Thus, the factors of *ac* that adds up to 5 are 2 and 3.

Example 1 Continued

This mean

$$x^2 + 2x + 3x + 6$$

Group the first two and the second two terms

 $x^2 + 2x + 3x + 6$

From the groups, factor out their GCF

x(x+2) + 3(x+2)

Notice that each group has a common term: "x + 2" Factor that out from the group, and finally you have (x + 2)(x + 3)

Example

- Factor the following polynomial: $x^2 - 6x + 8$ Factors of ac = 8
- a = 1 , b = -6 , c = 8
- The factors of 8 that add to make -6 are -2 and -4.
- Thus
 $x^2 2x 4x + 8$

 Next
 x(x-2) 4(x-2)

 Finally
 (x-2)(x-4)

Critical Question

- How do we know if the factors of *ac* have to add up to *b* or must have a difference of *b*.
- How to remember the rules:
 - Add to *b*:
 - $ax^2 + bx + c$
 - $ax^2 bx + c$
 - Difference of *b*:
 - $ax^2 + bx c$
 - $ax^2 bx c$

Factor the Polynomial completely: x² + 3x - 18 Add to b or Difference of b Factors of ac =

Then

$$x^{2} - 3x + 6x - 18$$

x(x - 3) + 6(x - 3)
(x - 3)(x + 6)

Day 2: Warmup

Factor the Following Polynomials

1.
$$x^2 + 9x + 18$$

2.
$$x^2 - 12x + 35$$

3.
$$x^2 + 5x - 24$$

Day 2: What about when a > 1?

The rules are the same, just a little more work.
Example:

$$2x^2 + 7x + 6$$

Factors of ac = 12 that add to make b = 7 are

Example

• Factor the Polynomial Completely $5x^2 + 13x - 6$

Factors of ac = -30 that have a difference of b = 13 are

Exit Ticket

• Factor the Following Polynomials

1.
$$3x^2 + 8x + 5$$

2.
$$2x^2 - 15x - 8$$