Geometry Unit 3: Proofs

If-Then Statements;
Converses

Warmup

- How you feel when you hear about proofs...
https://www.youtube.com/watch?v=Ho7zYvkNYL8

If-Then Statements; Converses

- Content Objective: Students will be able to identify the hypothesis and conclusion of conditional statements.
- Language Objective: Students will be able to identify and state counterexamples for conditional statements, if they exists.

Conditional Statements

- If-then statements, or conditional statements, are statements that begin with a hypothesis (the "If") and leads to a conclusion (the "Then").
- The basic form of an if-then statement is:

$$
\text { If } p \text {, then } q
$$

- Where p is the hypothesis, and q is the conclusion.
- Example (More real world): If it rains, then my car will be covered in dirt.
- Example (In Geometry): If B is between A and C, then $A B+B C=A C$.

Conditional Statements

- Conditional Statements are not always written with the "If" first. Here are some examples (They all mean the same thing).

General Form
p implies q.
p only if q. q if p.

Example

$$
x^{2}=25 \text { implies } x<10
$$

$$
x^{2}=25 \text { only if } x<10
$$

$$
x<10 \text { if } x^{2}=25
$$

Converses

- The Converse of a conditional statement is formed by switching the hypothesis and conclusion.
- Statement: If p, then q. Converse: If q, then p.
- A statement and its converse say different things. In some cases, a statement can be true, but its converse can come out to be false.

Statement: If $4 x=20$, then $x=5$.
True Converse: If $x=5$, then $4 x=20$.

Counterexample

- An If-then statement is false if an example can be found where the hypothesis is true, but the conclusion is false. We call this a Counterexample.
- It only takes one counterexample to disprove a statement.

Statement: If $x^{2}=25$, then $x=5$
Counterexample: x could also equal -5 .

- Thus the statement is disproven.

