Geometry: Unit 1: Transformations

Chapter 14 (In Textbook)

Transformations

- <u>Objective</u>: Students will be able to do the following, regarding geometric transformations.
 - Write Transformations Symbolically and justify their choice.
 - Explain the movement of points for a given transformation.
 - Draw an image under each transformation.

Mapping

A correspondence between the pre-image and image is a **MAPPING IF AND ONLY IF** each member of the pre-image corresponds to one and only one member of the image.

Transformation

- In Algebra when there is exactly the same number of elements in the domain as there is in the range it is called a ONE TO ONE FUNCTION.
- In geometry, when you have the same number of points in the pre-image as in the image, it is called a TRANSFORMATION.

Transformations: Image and Pre-Image

A **transformation** is a one-to-one correspondence between the points of the **pre-image** and the points of the **image**. A **transformation** guarantees that if our **pre-image** has three points, then our **image** will also have three points.

Pre-Image: The figure prior to transformation (*P*) **Image:** The figure after the transformation (*P'*)

Isometry

An **ISOMETRIC TRANSFORMATION (RIGID MOTION)** is a transformation that preserves the distances and/or angles between the pre-image and image.

Isometry

- An Isometric Transformation has the following properties are preserved:
 - Distance (All lengths stay the same)
 - Angle measure (All angles stay the same)
 - Parallelism (All lines that are parallel stay parallel)
 - Collinearity (All points on a line remain on a line)
- In short, the transformed figure (Image) is the same shape and size as the original figure (Pre-Image).

Non-Isometry

 A NON-ISOMETRIC TRANSFORMATION (NON-RIGID MOTION) is a transformation that does not preserve the distances between the pre-image and image.

Non-Isometry

- A Non-Isometric Transformation has the following properties preserved:
 - Angle measure (All angles stay the same)
 - Parallelism (All lines that are parallel stay parallel)
 - Collinearity (All points on a line remain on a line)
- In short, the transformed figure (Image) has the same shape as the original figure (Pre-Image), but not the same size.

Transformations

- The following Transformations are Isometries:
 - Reflections
 - Rotations
 - Translations
- The following Transformations are Non-Isometries:
 - Dilations

Reflections (Textbook pg. 577)

A **reflection** in a line m is an isometric transformation that maps a point P on the plane to a point P', so that the following properties are true:

 If P is not on the line m, then the line m is a perpendicular bisector of <u>PP'</u>.

• 2. If P is on the line m, then P = P'.

REFLECTIONS: NOTATION

• To abbreviate a reflection in the line m, we write R_m . To abbreviate the statement R_m maps P to P', we write $R_m: P \rightarrow P'$ or $R_m(P) = P'$.

TRANSLATIONS (TEXTBOOK PG. 583)

A transformation that glides all points of the plane the same distance in the same direction is called a translation.

When working on the coordinate plane, a vector is used to describe the fixed distance and the given direction often denoted by <x,y>. The x value describes the effect on the x coordinates (right or left) and the y value describes the effect on the y coordinates (up or down).

The pre-image and image have the same shape and size.

$$T_{<\!\!\alpha,p\!\!>}(\Delta ABC) = \Delta A'B'C'$$

Rotations (Textbook pg. 588)

- A rotation is an isometric transformation that turns a figure about a fixed point called the center of rotation. Rays drawn from the center of rotation to a point and its image form an angle called the angle of rotation.
- For a counterclockwise rotation about a point O through x° , we write $R_{(0,x)}$. A counterclockwise rotation is considered positive, and a clockwise rotation is considered negative.

Rotations

∞ An object and its rotation are the same shape and size, but the figures may be turned in different directions.

Final Words

- For the next few days, there will be a sub.
- Follow the subs rules.
- Be on your best behavior.
- Bring your textbooks the rest of this week.