Geometry: Unit 1: Transformations

Chapter 14 (In Textbook)

Objective: Students will be able to do the following, regarding geometric transformations.

Write Transformations Symbolically and justify their choice.

Explain the movement of points for a given transformation.

Draw an image under each transformation.

A correspondence between the pre-image and image is a MAPPING IF AND ONLY IF each member of the pre-image corresponds to one and only one member of the image.

\#1 MAPPING	\#2 MAPPING	\#3 NOT A MAPPING	\#4 MAPPING
If the pre-image is $\triangle K L M$, K maps to N L maps to O M maps to P	If the pre-image is $\triangle K L M$, M maps to R K maps to Q L maps to Q	If the pre-image is $\triangle K L M$, K maps to S L maps to T M maps to U M maps to V	If the pre-image is $\triangle K L M$, K maps to T L maps to T M maps to T

In Algebra when there is exactly the same number of elements in the domain as there is in the range it is called a ONE TO ONE FUNCTION.
In geometry, when you have the same number of points in the pre-image as in the image, it is called a TRANSFORMATION.

ONE TO ONE FUNCTION
Set $\mathrm{A} \rightarrow$ SOT ONE TO ONE FUNCTION

A transformation is a one-to-one correspondence between the points of the pre-image and the points of the image. A transformation guarantees that if our pre-image has three points, then our image will also have three points.

Pre-Image: The figure prior to transformation (\boldsymbol{P})
Image: The figure after the transformation (\boldsymbol{P}^{\prime})

An ISOMETRIC TRANSFORMATION (RIGID MOTION) is a transformation that preserves the distances and/or angles between the pre-image and image.

Example \#1

Rotate (Turn) - Example \#1

Example \#2

Translate (Slide) - Example \#2

Example \#3

Reflection (Flip) - Example \#3

An Isometric Transformation has the following properties are preserved:

Distance (All lengths stay the same)
Angle measure (All angles stay the same)
Parallelism (All lines that are parallel stay parallel)
Collinearity (All points on a line remain on a line)

- In short, the transformed figure (Image) is the same shape and size as the original figure (Pre-Image).

A NON-ISOMETRIC TRANSFORMATION (NON-RIGID MOTION) is a transformation that does not preserve the distances between the pre-image and image.

A Non-Isometric Transformation has the following properties preserved:

Angle measure (All angles stay the same)
Parallelism (All lines that are parallel stay parallel)
Collinearity (All points on a line remain on a line)

- In short, the transformed figure (Image) has the same shape as the original figure (Pre-Image), but not the same size.

The following Transformations are

 Isometries:Reflections
Rotations
Translations

The following Transformations are NonIsometries:

Dilations

A reflection in a line m is an isometric transformation that maps a point P on the plane to a point P^{\prime}, so that the following properties are true:

- 1. If P is not on the line m, then the line m is a perpendicular bisector of $\overline{P P^{\prime}}$.

REFLECTIONS: NOTATION

- To abbreviate a reflection in the line m, we write R_{m}. To abbreviate the statement R_{m} maps P to P^{\prime}, we write $R_{m}: P \rightarrow P^{\prime}$ or $R_{m}(P)=P^{\prime}$.

TRANSLATIONS (TEXTBOOK PG. 583)

- A transformation that glides all points of the plane the same distance in the same direction is called a translation.
- When working on the coordinate plane, a vector is used to describe the fixed distance and the given direction often denoted by $\langle x, y\rangle$. The x value describes the effect on the x coordinates (right or left) and the y value describes the effect on the y coordinates (up or down).

The pre-image and image have the same shape and size.

$$
T_{<x, y>}(\Delta A B C)=\Delta A^{\prime} B^{\prime} C^{\prime}
$$

Rotations (Texilbook pg. 588)

so A rotation is an isometric transformation that turns a figure about a fixed point called the center of rotation. Rays drawn from the center of rotation to a point and its image form an angle called the angle of rotation.
so For a counterclockwise rotation about a point O through x°, we write $R_{(0, x)}$. A counterclockwise rotation is considered positive, and a clockwise rotation is considered negative.

$$
\mathrm{R}_{\left(\mathrm{O}, \mathrm{x}^{\mathrm{o}}\right)}
$$

Rotations

so An object and its rotation are the same shape and size, but the figures may be turned in different directions.

For the next few days, there will be a sub. Follow the subs rules.

Be on your best behavior.
Bring your textbooks the rest of this week.

