C.O.: \qquad
L.O.: \qquad

Prisms:

- The ends of a prism are called the \qquad
- These bases are \qquad to each other and are \qquad .
- The faces of the prism that are not its bases are known as its

\qquad _.
- Adjacent lateral faces intersect in parallel segments called \qquad _.
- The \qquad of a prism is a segment joining the planes that contain the bases.
- The length of the altitude is the \qquad h, of the prism.

Theorem 12-1: The lateral area of a right prism equals \qquad

Equation:

*Refer to this diagram for both theorems.

Theorem 12-2: The volume of a right prism equals \qquad

Equation:

Cubes:

A rectangular prism with square faces is known as a cube.
Since each face is a square, then all of its edges have equal length.

The volume then can be simplified to: $\boldsymbol{V}=$ \qquad where \qquad represents a single edge.

Practice: Given a right prism, find the
a.) Lateral Area
b.) Total Area (Eq: T.A. $=\boldsymbol{L} . \boldsymbol{A} .+2 B$, where B is the area of each base)
c.) Volume
1.)

2.)

Group Practice:

(1-4) Given a right prism, find the
a.) Lateral Area
b.) Total Area
c.) Volume
1.)
1.)

2.)

(5-6) Given the volume or lateral area
a.) Find the height
b.) Find the Lateral Area/Volume
c.) Find the Total Area

5.) Volume: $V=330$

6.) Lateral Area: L.A. $=66$

