
<u>C.O.</u> :	
L.O.:	
<u>Similar Solids:</u>	
	are solids that have the same shape but not necessarily
the same size.	
To determine if tv	vo solids are similar, you must check

- That their bases are _____
- That corresponding lengths are ______

If the solids are similar, we will be able to identify a ratio between their corresponding parts, known as the ______

<u>Checking for Similarity:</u> Identify whether or not these figures are similar or not.

<u>Examining Similarity</u>: Find the scale factor between the values given in each of the first two columns. Identify how these scale factors relate to the original scale factor given.

	Pyramid I	Pyramid II	Scale Factor
Scale Factor:			² / ₁
Base Perimeter:	12	6	/
Lateral Area:	240	60	/ = /
Volume:	384	48	/ = /

Can you see the relationship between the original scale factor and the scale factors for the base perimeter, lateral area, and volume?

Theorem 12-11: If the scale factor of two similar solids is a: b, then

(1) The ratio of corresponding perimeters is _____.

(2) The ratio of the base areas, the lateral area, and the total areas is _____: ____.

(3) The ratio of the volumes is ____: ___.

<u>Practice</u>: Given the following measurements for similar solids, identify the reduced ratio for each of the following.

1.) Given height 2 and height 5.	2.) Given areas 4π and 12π .
a. Scale Factor	a. Scale Factor

b. Total Areas _____ b. Volumes _____

The following solids are similar. Use the given information to solve for the value.

3.) The scale factor of solid A : solid B is 3:4.	4.) The scale factor of solid C : solid D is 6:5.
If solid A has a circumference of 18, calculate the circumference of solid B.	If solid C has a base area of 108, calculate the base area of solid D.

<u>Group Practice</u>: Given the following measurements for similar solids, identify the reduced ratio for each of the following.

1.) Given height 4 and height 7.	2.) Given areas 3π and 5π .
a. Scale Factor	a. Scale Factor

b. Total Areas _____ b. Volumes _____

The following solids are similar. Use the given information to solve for the value.

3.) The scale factor of solid A : solid B is 7:8.	4.) The scale factor of solid C : solid D is 5:1.
If solid A has a perimeter of 35, calculate the perimeter of solid B.	If solid C has a lateral area of 100, calculate the lateral area of solid D.

12-5: Area and Volume of Similar Solids