C.O.: \qquad
L.O.: \qquad

Slopes: Recap

The Slope of a line is the ratio of change in \qquad (vertical change, or \qquad) to the change in __ (horizontal change, or ___).
Parallel Lines have slopes that are \qquad .

Perpendicular Lines have slopes that \qquad .
Positive slopes (\#2 on the warm-up) \qquad to the right.

Negative slopes (\#1 on the warm-up) \qquad to the right.

Slopes: Continued

From the warm-up, you noticed something about the answers for problems 3 and 4.
On the two graphs provided, graph the points given of these two problems. Name the kind of line the points make.
3. $(1,6)$ and $(4,6)$

4. $(3,3)$ and $(3,7)$

Conclusion: \qquad lines have a slope of \qquad and \qquad lines have an \qquad slope.

Midpoint:

As a reminder, the Midpoint of a line segment is a point M such that \qquad .

We can calculate the value of this midpoint if we have the values of the endpoints.
Ex: If $A=x_{1}$ and $B=x_{2}$, then the value of M will be

$$
M=
$$

The Midpoint Formula - Theorem 13-5: The midpoint of the segment that joins points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point

$$
\boldsymbol{M}=(\square)
$$

Practice: Find the midpoint of the segment that joins the points given
1.) $(-11,3)$ and $(8,-7)$
2.) $(2,1)$ and $(8,-5)$
3.) $(1,-3)$ and $(5,1)$

Example: \boldsymbol{M} is the midpoint of $\overline{\boldsymbol{A B}}$, where the coordinates of \boldsymbol{A} are given. Find the coordinates of B

A: $(1,-3) ; M:(5,1)$

Group Practice: Find the midpoint of the segment that joins the points given
1.) $(3,5)$ and $(9,-7)$
2.) $(2,5)$ and ($-1,2$)
3.) $(0,4)$ and $(4,3)$

Find the midpoint and slope of the segment that joins the points given.
4.) $(3,-8)$ and $(-5,2)$
5.) $(-3,4)$ and $(7,8)$
6.) $(-7,11)$ and $(1,-4)$

