<u>C.O.</u> :	 	 		
<u>L.O.</u> :	 	 		
	 	 	<u> </u>	

Slopes: Recap

The Slope of a line is the ratio of *change in* ___ (vertical change, or _____) to the *change in* ___ (horizontal change, or _____). Parallel Lines have slopes that are _____.

Perpendicular Lines have slopes that _____

Positive slopes (#2 on the warm-up) ______ to the right.

Negative slopes (#1 on the warm-up) _____ to the right.

Slopes: Continued

From the warm-up, you noticed something about the answers for problems 3 and 4.

On the two graphs provided, graph the points given of these two problems. Name the kind of line the points make.

<u>Midpoint:</u>

As a reminder, the Midpoint of a line segment is a point **M** such that _____.

We can calculate the value of this midpoint if we have the values of the endpoints.

<u>Ex:</u> If $A = x_1$ and $B = x_2$, then the value of M will be

<u>The Midpoint Formula - Theorem 13-5</u>: The midpoint of the segment that joins points (x_1, y_1) and (x_2, y_2) is the point

 $M = \left(----- \right)$

<u>Practice</u>: Find the midpoint of the segment that joins the points given 1.) (-11,3) and (8,-7)2.) (2,1) and (8,-5)3.) (1,-3) and (5,1)

<u>Example</u>: M is the midpoint of \overline{AB} , where the coordinates of A are given. Find the coordinates of B

A: (1,−3); **M**: (5,1)

<u>Group Practice</u>: Find the midpoint of the segment that joins the points given

1.) (3,5) and (9,-7) **2.)** (2,5) and (-1,2) **3.)** (0,4) and (4,3)

Find the midpoint and slope of the segment that joins the points given.

4.) (3, -8) and (-5, 2) **5.**) (-3, 4) and (7, 8) **6.**) (-7, 11) and (1, -4)