<u>C.O.</u> :	 	 	
L.O.:	 	 	

<u>Slopes:</u>

The **Slope** of a line is the ratio of *change in* (vertical change, or _____) to the *change in* (horizontal change, or ____).

Symbolically, the slope is denoted by an _____.

Algebraically, the slope can be defined using the following equation, with points (x_1, y_1) and (x_2, y_2) :

$$m = \frac{change in}{change in} = \frac{change in}$$

Example with Slopes: Calculate the slope of each Line.

Slopes of Parallel Lines:

As a reminder, Parallel Lines (II lines) are coplanar lines that

<u>Key Question</u>: From the image given, and from what you know about slopes, can you determine the relationship between the slopes of parallel lines? Discuss this question in your groups

Theorem 13-3: Two nonvertical lines are parallel if and only if _____

Given:

Notation:

Then:

<u>Slopes Perpendicular Lines</u>: As a reminder, Perpendicular Lines (1 lines) are lines that _____.

<u>Key Question</u>: From the image given, and from what you know about slopes, can you determine the relationship between the slopes of perpendicular lines? Discuss this question in your groups

Theorem 13-4: Two nonvertical lines are perpendicular if and only if _____

Given:

Then:

<u>Practice</u>: Calculate the slope of each Line.

<u>Group Practice</u>: Complete the table of slope values

Starting Points	Slope	Parallel Slope	Perpendicular Slope
(1,2) and (-2,-5)			
(-4,3) and (6,-6)			

Slopes of Lines