C.O.: \qquad
L.O.: \qquad

Slopes:

The Slope of a line is the ratio of change in \qquad (vertical change, or \qquad) to the change in__ (horizontal change, or \qquad).
Symbolically, the slope is denoted by an \qquad .

Algebraically, the slope can be defined using the following equation, with points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$:

$$
m=\frac{\text { change in }}{\text { change in }}=\square=.
$$

\qquad
Example with Slopes: Calculate the slope of each Line.

Slopes of Parallel Lines:

As a reminder, Parallel Lines (II lines) are coplanar lines that

Key Question: From the image given, and from what you know about slopes, can you determine the relationship between the slopes of parallel lines? Discuss this question in your groups

Theorem 13-3: Two nonvertical lines are parallel if and only if \qquad
\qquad .

Given:

Then:

Slopes Perpendicular Lines: As a reminder, Perpendicular Lines (\perp lines) are lines that \qquad
Notation:

Key Question: From the image given, and from what you know about slopes, can you determine the relationship between the slopes of perpendicular lines? Discuss this question in your groups
Theorem 13-4: Two nonvertical lines are perpendicular if and only if \qquad

Given:

Then:
Practice: Calculate the slope of each Line.

Group Practice: Complete the table of slope values

Starting Points	Slope	Parallel Slope	Perpendicular Slope
$(\mathbf{1}, \mathbf{2})$ and $(-\mathbf{2},-\mathbf{5})$			
$(-\mathbf{4}, \mathbf{3})$ and $(\mathbf{6},-\mathbf{6})$			

