Geometry Unit 3: Proofs

Perpendicular Lines

(2

Warm-up

Real When you just throw out random answers for your proofs, you sound like...

<u>https://www.youtube.com/watch?v=WckCw_7e3M</u>

Perpendicular Lines

Perpendicular Lines

Rependicular Lines are two lines that intersect to form right angles.

Intersecting Lines that form 1 right angle always form 4 right angles.

Perpendicular Lines

Applications of the Definition:

- 1. If \overrightarrow{JK} is <u>Perpendicular</u> to \overrightarrow{MN} , written as $\overrightarrow{JK} \perp \overrightarrow{MN}$, then each of the numbered angles is a <u>right</u> angle.
- 2. If any one of the numbered angles is a <u>right</u> angle, then $\overrightarrow{JK} \perp \overrightarrow{MN}$.
- 3. The word <u>Perpendicular</u> can also be used for intersecting rays.

(Ex: If $\overrightarrow{JK} \perp \overrightarrow{MN}$ in the diagram, then $\overrightarrow{JK} \perp \overrightarrow{MN}$ and the sides of < 2 are <u>Perpendicular</u>).

Theorems

Statements that are proved using:
Given Information
Definitions
Postulates
Properties
Proven Theorems

Proving Theorem 2-4		
	<u>CB</u>	
		en they form $\uparrow l$
Prove: < 1, < 2, < 3, and < Statements	< 4 are \cong angles Reasons \leftarrow	2 1
1. $l \perp n$	1. Given	3 4 n
2. < 1, < 2, < 3, < 4 are 90° <'s	2. Def. of Perp. <'s	\checkmark
3. < 1, < 2, < 3, < 4 are $\cong <'s$	3. Def. of $\cong <'s$	

1 IOVINg INCOLEIN 2-5		
<u> </u>		
<u>A Theorem 2-5</u> : If two lines are of the lines are perpendicular. Given: < 1 ≅ < 2	congruent and adjacent angles, then \int^{l}	n
Prove: $l \perp n$		
<u>Statements</u>	Reasons 2 1	
$1. < 1 \cong < 2, or m < 1 = m < 2$	1. Given	n
2. $m < 1 + m < 2 = 180^{\circ}$	2. Angle Add. Post.	
3. $m < 1 + m < 1 = 180^{\circ};$ $2(m < 1) = 180^{\circ}$	3. Subst. Prop.	
4. $m < 1 = 90^{\circ}$	4. Div. Prop.	
5. $l \perp n$	5. Definition of Perp. Lines	

Proving Theorem 2-5

Proving Theorem 2-6		
<u> </u>		
<u> </u>		
Given: $\overrightarrow{OA} \perp \overrightarrow{OC}$	$A \bullet$	
Prove: < AOB and < BOC are comp. <'s		
Statements	Reasons B	
1. $\overrightarrow{OA} \perp \overrightarrow{OC}$	1. Given	
2. $m < AOC = 90^{\circ}$	2. Def. of Perp. Rays $O \xrightarrow{C} C$	
3. m < AOB + m < BOC $= m < AOC$	3. Angle Add. Post.	
4. $m < AOB + m < BOC = 90^{\circ}$ 4. Subst. Prop.		
5. < <i>AOB</i> and < <i>BOC</i> are Comp. <'s 5. Definition of Comp. <'s		