Geometry Unit 3: Proofs cos

Perpendicular Lines

Warm-up

co When you just throw out random answers for your proofs, you sound like...
as https:/ / www.youtube.com/watch?v=WckCw_7e3M

Perpendicular Lines

Q Content Objective: Students will be able to use the properties of perpendicular lines to prove theorems.
$\propto<$ Language Objective: Students will be able to write two-column proofs involving perpendicular lines.

Perpendicular Lines

 CHco Perpendicular Lines are two lines that intersect to form right angles.
©s Intersecting Lines that form $\mathbf{1}$ right angle always form 4 right angles.

Perpendicular Lines

as Applications of the Definition:

1. If $\overrightarrow{J K}$ is Perpendicular to $\overleftrightarrow{M N}$, written as $\overleftrightarrow{J K} \perp \overleftrightarrow{M N}$, then each of the numbered angles is a right angle.
2. If any one of the numbered angles is a right angle, then $\overleftrightarrow{J K} \perp \overleftrightarrow{M N}$.
3. The word Perpendicular can also be used for intersecting rays.
(Ex: If $\overleftrightarrow{J K} \perp \overleftrightarrow{M N}$ in the diagram, then $\overline{J K} \perp \overline{M N}$ and the sides of <2 are Perpendicular_).

Theorems

α_{3} Statements that are proved using:
os Given Information
cs Definitions
cs Postulates
cs Properties
cs Proven Theorems

Proving Theorem 2-4

∞ Theorem 2-4: If two lines are perpendicular, then they form congruent adjacent angles.
Given: $l \perp n$
Prove: $<1,<2,<3$, and <4 are \cong angles

Statements

1. $l \perp n$
2. $<1,<2,<3,<4$ are $90^{\circ}<$'s
3. $<1,<2,<3,<4$ 3. Def. of $\cong<' s$ are $\cong<' s$

Reasons

1. Given
2. Def. of Perp. <'s -

Proving Theorem 2-5

\propto_{3} Theorem 2-5: If two lines are congruent and adjacent angles, then the lines are perpendicular.
Given: $<1 \cong<2$
Prove: $l \perp n$

1. $<1 \cong<2$, or $m<1=m<2$ 1. Given
2. $m<1+m<2=180^{\circ}$
3. Angle Add. Post.
4. $m<1+m<1=180^{\circ}$;
5. Subst. Prop.

$$
2(m<1)=180^{\circ}
$$

4. $m<1=90^{\circ}$
$5 . l \perp n$
5. Div. Prop.
6. Definition of Perp. Lines

Proving Theorem 2-6

\propto Theorem 2-6: If the exterior sides of two adjacent acute angles are perpendicular, then the angles are complementary.

Given: $\overrightarrow{O A} \perp \overrightarrow{O C}$

Prove: $\angle A O B$ and $\angle B O C$ are comp. $<$'s

Statements

1. $\overrightarrow{O A} \perp \overrightarrow{O C}$
2. $m<A O C=90^{\circ}$
3. $m<A O B+m<B O C$

$$
=m<A O C
$$

4. $m<A O B+m<B O C=90^{\circ}$
5. $<A O B$ and $<B O C$ are Comp. $<' s$
