Geometry Unit 3 Planning a Proof

Planning a Proof

- Content Objective: Students will be able to develop strategies for constructing two-column proofs
- Language Objective: Students will be able to identify and utilize key strategies for writing proofs.

Structure of a Proof

- As seen from the last few sections, the proof of a theorem consists of 5 parts:

1. Statement of the theorem.
2. A diagram that illustrates the given information.
3. A list, in terms of the figure, of what is given.
4. A list, in terms of the figure, of what you need to prove.
5. A series of statements and reasons that lead from the given information to the statement that is to be proved.

Planning a Proof

- Sometimes, the diagrams and statements will be given to you. Other times, you will have to make it yourself.
- Some tips for constructing your proof:
- If you have to make the diagram, try to make it reasonably accurate.
- Carefully plan your two-column proof
- If you don't see the method for the proof immediately, try reasoning backwards from what you would like to prove. (Ex: "This conclusion will be true if ? ..")
- Study proofs from previous theorems for ideas.

Proving Theorem 2-7

- Theorem 2-7: If two angles are supplements of congruent angles (or of the same angle), then the two angles are congruent.
Given: <1 and <2 are supplementary;
<3 and <4 are supplementary;
$<2 \cong<4$
Prove: $<1 \cong<3$

Statements

1. <1 and <2 are supplementary;
<3 and <4 are supplementary
2. $m<1+m<2=180^{\circ}$
$m<3+m<4=180^{\circ}$
3. $m<1+m<2=m<3+m<4$
4. $<2 \cong<4$, or $m<2=m<4$
5. $m<1=m<3$, or $<1 \cong<3$

Reasons

1. Given
2. Def. of Supp. <'s
3. Subst. Prop.
4. Given
5. Subtr. Prop.

Proving Theorem 2-8

- Theorem 2-8: If two angle are compliments of congruent angles (or of the same angle), then the two angles are congruent.
Given: <1 and <2 are complementary;
<3 and <4 are complementary;
$<2 \cong<4$
Prove: $<1 \cong<3$

Statements

1. <1 and <2 are complementary;
<3 and <4 are complementary
2. $m<1+m<2=90^{\circ}$
$m<3+m<4=90^{\circ}$
3. $m<1+m<2=m<3+m<4$
4. $<2 \cong<4$, or $m<2=m<4$
5. $m<1=m<3$, or $<1 \cong<3$

Reasons

1. Given
2. Def. of Comp. <'s
3. Subst. Prop.
4. Given
5. Subtr. Prop.
