Geometry Unit 2

Postulates
And
Theorems

Warmup

- Refer to the diagram and complete the statements. *(Don't forget about our previous terms)

- 1. $<B A F \cong$ \qquad because they are \qquad angles.
- 2. $B A+A G=$ \qquad by the \qquad Postulate.
- 3. $<B A F$ and $<B A H$ are \qquad angles because they add up to \qquad .
- $4 . m<E A H+\ldots=m<E A G$ by the
\qquad Postulate.

Postulates and Theorems

- Content Objective: Students will be able to know and use postulates and theorems related to points, lines and planes.
- Language Objective: Students will be able to use postulates and theorems to determine whether a given statement is true or false.

Basic Terms

- Postulate: A basic assumption that is accepted without proof.
- Theorem: A statement that can be proved using postulates, definitions, and previously used theorems.
- Exists: There is at least one.
- Unique: There is no more than one.
- One and only one: There is exactly one.
- Determine: To decline or specify.

Previous Postulates

- Segment Addition Postulate:
- If \boldsymbol{B} is between \boldsymbol{A} and \mathbf{C}, then $A B+B C=A C$.

- Angle Addition Postulate:
- If point B lies in the interior of $\angle A O C$, then

$$
m<A O B+m<B O C=m<A O C .
$$

New Postulates - Pg 23 (Textbook)

- Postulate \#5:
- A line contains at least 2 points.
- A plane contains at least 3 non-collinear points.
- A space contains at least 4 non-coplanar points.

New Postulates - Pg 23 (Textbook)

- Postulate \#6:
- Through any two points, there is exactly 1 line.
- Postulate \#7:
- Through any three points there is at least 1 plane.
- Through any three non-collinear points there is exactly one plane.

New Postulates - Pg 23 (Textbook)

- Postulate \#8:
- If two points are in a plane, then the line that contains the points is also in the plane.

New Postulates - Pg 23 (Textbook)

- Postulate \#9:
- If two planes intersect, then their intersection is a line.
> In the diagram, $\overleftrightarrow{\boldsymbol{D C}}$ is the intersection of Plane \mathbf{A} and Plane B.

Theorems

- Theorem 1-1: Intersection of Lines
- If two lines intersect, then they intersect in exactly one point.

- What postulate could you use to prove this theorem?

Postulate 6

Theorems

- Theorem 1-2:
- Through a line and a point not in the line, there is exactly one plane.

- What postulate could you use to prove this theorem?

Postulate 7

Theorems

- Theorem 1-3: Intersection of Lines
- If two lines intersect, then exactly one plane contains the lines.

- What postulate could you use to prove this theorem?

Postulate 5...and 7

Practice Worksheet

State the Theorem or Postulate you would use to justify the statement made about each figure.
1.)
2.)
$\overleftrightarrow{K L}$ lies in plane P.

Postulate 8

One plane contains t and I.

Theorem 1-3

Practice Worksheet

State the Theorem or Postulate you would use to justify the statement made about each figure.
3.)
4.)

One plane contains points A, B, and C.

Postulate 7

One plane contains $\overrightarrow{A C}$ and B.

Theorem 1-2

Practice Worksheet

Each of the following statements is FALSE. Use a complete sentence to explain why.
9.) A plain is made up of exactly 3 points.

A plane is made up of AT LEAST 3 points (There could be more)

10.) If two lines intersect, then at least one plane contains the lines.
Exactly one plane contains the lines (Theorem 1-3).

