Geometry – Unit 2

Postulates And Theorems

Warmup

Refer to the diagram and complete the statements. *(Don't forget about our previous terms)

- 1. $< BAF \cong$ _____ because they are _____ angles.
- 2. BA + AG =_____ by the ______ Postulate.
- 3. < BAF and < BAH are _____ angles because they add up to _____.
- 4. $m < EAH + ___ m < EAG$ by the _____Postulate.

Postulates and Theorems

- <u>Content Objective:</u> Students will be able to know and use postulates and theorems related to points, lines and planes.
- Language Objective: Students will be able to use postulates and theorems to determine whether a given statement is true or false.

Basic Terms

- **<u>Postulate</u>**: A basic assumption that is accepted without proof.
- **Theorem:** A statement that can be proved using postulates, definitions, and previously used theorems.
- Exists: There is at least one.
- **<u>Unique:</u>** There is no more than one.
- **One and only one:** There is exactly one.
- **Determine:** To decline or specify.

Previous Postulates

Segment Addition Postulate: If B is between A and C, then AB + BC = AC.

• Angle Addition Postulate: • If point B lies in the interior of < AOC, then m < AOB + m < BOC = m < AOC.

• Postulate #5:

- A line contains at least 2 points.
- A plane contains at least 3 non-collinear points.
- A space contains at least 4 non-coplanar points.

• Postulate #6:

• Through any two points, there is **exactly 1 line**.

• Postulate #7:

Through any three points there is at least 1 plane.
Through any three non-collinear points there is exactly one plane.

o Postulate #8:

• If two points are in a plane, then the line that contains the points is also in the plane.

• Postulate #9:

- If two planes intersect, then their intersection is a line.
- > In the diagram, \overleftarrow{DC} is the intersection of **Plane A** and **Plane B**.

Theorems

• Theorem 1-1: Intersection of Lines

• If two lines intersect, then they intersect in exactly one point.

• What postulate could you use to prove this theorem? Postulate 6

Theorems

• Theorem 1-2:

• Through a line and a point not in the line, there is exactly one plane.

• What postulate could you use to prove this theorem?

Postulate 7

Theorems

• Theorem 1-3: Intersection of Lines

• If two lines intersect, then exactly one plane contains the lines.

• What postulate could you use to prove this theorem? Postulate 5...and 7

Practice Worksheet

State the Theorem or Postulate you would use to justify the statement made about each figure.

1.) 2.)

One plane contains t and l.

Postulate 8

Theorem 1-3

Practice Worksheet

State the Theorem or Postulate you would use to justify the statement made about each figure.

3.) 4.)

One plane contains points A, B, and C.

A .B .C

Postulate 7

Theorem 1-2

Practice Worksheet

Each of the following statements is **FALSE**. Use a complete sentence to explain why.

9.) A plain is made up of exactly 3 points.

A plane is made up of AT LEAST 3 points (There could be more)

10.) If two lines intersect, then at least one plane contains the lines.

Exactly one plane contains the lines (Theorem 1-3).

