GEOMETRY UNIT 3: PROOFS

PROOF BUILDING FT. PROPERTIES FROM ALGEBRA

WARMUP

Give the hypothesis and conclusion of the following statements:

1. If two segments have equal measure, then they are congruent.

2. If a = b and b = c, then a = c

3. If $< D \cong < E$, then $< E \cong < D$

PROOF BUILDING – PROPERTIES

- <u>Content Objective</u>: Students will be able to fill in algebraic and geometric proofs using properties of equality and congruence.
- Language Objective: Students will be able to state properties from Algebra, using them to construct two-column proofs.

PROPERTIES OF EQUALITY

- <u>Addition Property</u>: If a = b and c = d, then a + c = b + d
- Subtraction Property: If a = b and c = d, then a c = b d
- <u>Multiplication Property</u>: If a = b, then ca = cb
- **Division Property**: If a = b, and $c \neq 0$, then $\frac{a}{c} = \frac{b}{c}$
- **Distributive Property**: a(b + c) = ab + ac
- Substitution Property:

If a = b, then either a or b may be written in placed of the other in an equation

PROPERTIES OF EQUALITY (CONT.)

• <u>Reflexive Property</u>: a = a

• Symmetric Property: If a = b, then b = a

• **<u>Transitive Property</u>**: If a = b and b = c, then a = c

PROPERTIES OF CONGRUENCE

- <u>Reflexive Property</u>: $\overline{DE} \cong \overline{ED}$ $< XYZ \cong < ZYX$
- <u>Symmetric Property</u>: If $\overline{DE} \cong \overline{FG}$, then $\overline{FG} \cong \overline{DE}$

Or $If < D \cong < E, then < E \cong < D$

• **<u>Transitive Property</u>**: If $\overline{DE} \cong \overline{FG}$ and $\overline{FG} \cong \overline{JK}$, then $\overline{DE} \cong \overline{Jk}$ **Or** If $\langle X \cong \langle Y \text{ and } \langle Y \cong \langle Z, then \langle X \cong \langle Z \rangle$

SOLVING EQUATIONS

- Solve 2x = 10 3x, and justify each step.
- Steps 1. 2x = 10 - 3x2. 5x = 103. x = 23
 - Reasons 1. Given Equation
 - 2. Addition Property
 - 3. Division Property

TWO-COLUM PROOFS

- Begin with what you are <u>Given</u>.
- End with what you are trying to <u>Prove</u>.
- Make logical <u>statements</u> in between.
- Justify each statement with a <u>Reason</u>.

USING A TWO-COLUMN PROOF

Given: \overline{RT} and \overline{PQ} intersecting at S so that RS = PS and ST = SQProve: RT = PQ

Proof:

Statements

RS = PS; ST = SQ
RS + ST = PS + SQ
RS + ST = RT; PS + SQ = PQ
RT = PQ

Reasons

- 1. Given
- 2. Addition Property
- 3. Segment Addition Post.
- 4. Substitution Property

USING A TWO-COLUMN PROOF

Given: m < AOC = m < BODProve: m < 1 = m < 3**Proof:**

Statements

1. m < AOC = m < BOD
2. $m < AOC = m < 1 + m < 2;$ m < BOD = m < 2 + m < 3
3. $m < 1 + m < 2 = m < 2 + m < 3$
4. $m < 2 = m < 2$
5. $m < 1 = m < 3$

Reasons

- 1. Given
- 2. Angle Addition Post.
- 3. Substitution Property
- 4. Reflexive Property
- 5. Subtraction Property

FINAL WORD

- You can always use <u>Substitution</u> instead of <u>Transitivity</u>.
- You cannot always use <u>Transitivity</u> instead of <u>Substitution</u>.
- Safer to stick with <u>Substitution</u>.

