GEOMETRY UNIT 3: PROOFS

PROOF BUILDING FT.
PROPERTIES FROM ALGEBRA

WARMUP

- Give the hypothesis and conclusion of the following statements:

1. If two segments have equal measure, then they are congruent.
2. If $a=b$ and $b=c$, then $a=c$
3. If $<D \cong<E$, then $<E \cong<D$

PROOF BUILDING - PROPERTIES

- Content Objective: Students will be able to fill in algebraic and geometric proofs using properties of equality and congruence.
- Language Objective: Students will be able to state properties from Algebra, using them to construct two-column proofs.

PROPERTIES OF EQUALITY

- Addition Property: If $a=b$ and $c=d$, then $a+c=b+d$
- Subtraction Property: If $a=b$ and $c=d$, then $a-c=b-d$
- Multiplication Property: If $a=b$, then $c a=c b$
- Division Property: If $a=b$, and $c \neq 0$, then $\frac{a}{c}=\frac{b}{c}$
- Distributive Property: $a(b+c)=a b+a c$
- Substitution Property:

If $a=b$, then either a or b may be written
in placed of the other in an equation

PROPERTIES OF EQUALITY (CONT.)

- Reflexive Property: $a=a$
- Symmetric Property: If $a=b$, then $b=a$
- Transitive Property: If $a=b$ and $b=c$, then $a=c$

PROPERTIES OF CONGRUENCE

- Reflexive Property: $\overline{D E} \cong \overline{E D}$ $<X Y Z \cong<Z Y X$
- Symmetric Property: If $\overline{D E} \cong \overline{F G}$, then $\overline{F G} \cong \overline{D E}$

Or If $<D \cong<E$, then $<E \cong<D$

- Transitive Property: If $\overline{D E} \cong \overline{F G}$ and $\overline{F G} \cong \overline{J K}$, then $\overline{D E} \cong \overline{J k}$

Or If $<X \cong<Y$ and $<Y \cong<Z$, then $<X \cong<Z$

SOLVING EQUATIONS

- Solve $2 x=10-3 x$, and justify each step.
- Steps

1. $2 x=10-3 x$
2. $5 x=10$
3. $x=2$

Reasons

1. Given Equation
2. Addition Property
3. Division Property

TWO-COLUM PROOFS

- Begin with what you are Given.
- End with what you are trying to Prove.
- Make logical statements in between.
- Justify each statement with a Reason.

How to set up a proof:

USING A TWO-COLUMN PROOF

Given: $\overline{R T}$ and $\overline{P Q}$ intersecting at S so that

$$
R S=P S \text { and } S T=S Q
$$

Prove: $R T=P Q$

Proof:

Statements

1. $R S=P S ; S T=S Q$
2. $R S+S T=P S+S Q$
3. $R S+S T=R T ; P S+S Q=P Q$
4. $R T=P Q$

Reasons

1. Given
2. Addition Property
3. Segment Addition Post.
4. Substitution Property

USING A TWO-COLUMN PROOF

Given: $m<A O C=m<B O D$
Prove: $m<1=m<3$

Proof:

Statements

1. $m<A O C=m<B O D$
2. $m<A O C=m<1+m<2$; $m<B O D=m<2+m<3$
3. $m<1+m<2=m<2+m<3$
4. $m<2=m<2$
5. $m<1=m<3$

Reasons

1. Given
2. Angle Addition Post.
3. Substitution Property
4. Reflexive Property
5. Subtraction Property

FINAL WORD

- You can always use Substitution instead of Transitivity .
- You cannot always use Transitivity instead of Substitution.
- Safer to stick with Substitution.

