Geometry Unit 4

Properties of Parallel Lines

Properties of Parallel Lines

- Content Objective: Students will be able to use the properties of parallel lines to prove theorems and solve for variables.
- Language Objective: Students will be able to identify the properties of parallel lines from labeled diagrams.

Corresponding Angles

- Postulate 10: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.
- This postulate is essential for proving the next three theorems.

Theorem 3-2

Theorem 3-2: If two parallel lines are cut by a transversal, then alternate interior angles are congruent.
Given: k II n; transversal t cuts k and n.
Prove: $<1 \cong<2$

Statements
I. k II n
2. $<1 \cong<3$
3. $<3 \cong<2$
4. $<1 \cong<2$

Reasons
I. Given
2. Vertical Angle Theorem
3. If two parallel lines are cut by a transversal, then corr. <'s are \cong
4. Transitive/Substitution Property

Theorem 3-3

Theorem 3-3: If two parallel lines are cut by a transversal, then same-side interior angles are supplementary. Given: k II n; transversal t cuts k and n.
Prove: <1 is supplementary

$$
\text { to }<4
$$

Statements

Reasons
I. $k \| n$
2. $m<2+m<4=180$
3. $<1 \cong<2$ or $m<1=m<2$
4. $m<1+m<4=180$
5. <1 is supplementary to <4.
I. Given
2.Angle Addition Postulate
3. If two parallel lines are cut by a transversal, then alt. int. <'s are \cong
4. Substitution Property
5. Def. of Supp. <'s

Theorem 3-4

Theorem 3-4: If a transversal is perpendicular one of two parallel lines, then it is perpendicular to the other line also.
Given: transversal t cuts I and n;

$$
t \perp I ;\| \| n
$$

Prove: $t \perp n$

Statements

1. $t \perp l$
2. $m<1=90$
3. | Il n
4. $<2 \cong<1$ or $m<2=m<1$
5. $m<2=90$
6. $t \perp n$

I. Given
7. Def. of perpendicular lines
8. Given
9. If two parallel lines are cut by a transversal, then corr. <'s are \cong
10. Substitution Property
11. Def. of perpendicular lines

Using the Properties

Find the values of x, y, and z.
Since a Il b, $2 x=40$ (Why?)
Thus,

$$
x=20
$$

Since c Il d, $y=40$ (Why?)
Since a II b, $y+z=180$ (Why?)

$$
\begin{array}{r}
40+z=180 \\
z=140
\end{array}
$$

