Geometry Unit 3

Proving Theorems

Proving Theorems

- Content Objective: Students will be able to prove theorems using definitions, properties and postulates.
- Language Objective: Students will be able to write two-column proofs to prove theorems.

Theorems

• Statements are proved using:

- Given Information
- Definitions
- Postulates
- Properties
- Proven Theorems

• Prove the Following statement:

Given: $AC = BD$ Prove: $AB = CD$	A B	C D
1. AC = BD	I. Given	
2. $AC = AB + BC$ BD = BC + CD	2. Segment Addition I	Postulate
3. $AB + BC = BC + CD$	3. Transitive Property	
4. AB = CD	4. Subtraction Proper	ty

Two-Column Proofs

How to set up a proof:

Proving Midpoint Theorem

- **Theorem 2-1**: If M is the midpoint of \overline{AB} , then $AM = \frac{1}{2}AB$ and $MB = \frac{1}{2}AB$
- Given: M is the midpoint of \overline{AB}
- **Prove:** $AM = \frac{1}{2}AB; MB = \frac{1}{2}AB$

Statements

- 1. M is the midpoint of \overline{AB} 2. AM = MB
- 3.AM + MB = AB
- 4. AM + AM = AB; 2AM = AB
- 5. $AM = \frac{1}{2}AB$ 6. $MB = \frac{1}{2}AB$

Reasons

- 1. Given
- 2. Definition of Midpoint
- 3. Segment Addition Postulate

Μ

B

4. Substitution Property

5. Division Property

6. Substitution Property

Deductive Reasoning

Proving with facts

 In deductive reasoning you are definite, you use definitions.

Proving Angle Bisector Theorem

Theorem 2-2: If BX is the angle bisector of < ABC, then m < ABX = ¹/₂m < ABC and m < XBC = ¹/₂m < ABC
Given: BX is the angle bisector of < ABC
Prove: m < ABX = ¹/₂m < ABC and m < XBC = ¹/₂m < ABC

Statements

1. \overrightarrow{BX} is the angle bisector of < ABC2. m < ABX = m < XBC

3. m < ABX + m < XBC = m < ABC

4. m < ABX + m < ABX = m < ABC;2(m < ABX) = m < ABC

$$5. m < ABX = \frac{1}{2}m < ABC$$

 $6. m < XBC = \frac{1}{2}m < ABC$

- <u>Reasons</u>
- 1. Given
- 2. Definition of Angle Bisector

X

C

- 3. Angle Addition Postulate
- 4. Substitution Property

5. Division Property

6. Substitution Property

Proving Vertical Angle Theorem

• **Theorem 2-3**: Vertical Angles are congruent.

Given: < 1 and < 2 are vertical angles</p>

• Prove: $< 1 \cong < 2$

