Geometry Unit 5

Ways to Prove Triangles Congruent

Warm-up

Mark the angles and sides of each pair of triangles to indicate that they are congruent.
1.)

$\Delta L M N \cong \Delta W U V$
2.)

$\Delta A B C \cong \triangle E D C$

Proving Triangles Congruent

- Content Objective: Students will be able to identify and use postulates to prove that triangles are congruent.
- Language Objective: Students will be able to read diagrams of congruent triangles and explain, in writing, the postulates that prove it.

How the Parts Relate

It is helpful to describe the parts of a triangle in terms of their relative positions.

- $\overline{A B}$ is opposite $<\mathrm{C}$.
- $\overline{A B}$ is included between $<\mathrm{A}$ and $<\mathrm{B}$
- $<A$ is opposite $\overline{\mathrm{BC}}$
- $<A$ is included between $\overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$.

Proving Triangles Congruent

- Reminder of the Definition of Congruent Triangles:
- Two triangles are congruent if and only if their vertices can be matched up so that the corresponding parts (angles and sides) of the triangles are congruent.
- In order to use this definition, we would have to show that all 6 corresponding parts are congruent...
- ... Or instead, lets use the following Postulates

Postulate 12 - SSS Postulate

- SSS Postulate: If three sides of a triangle are congruent to three sides of another triangle, then the triangles are congruent.

By the SSS Postulate,
$\Delta D E F \cong \triangle S R T$

Postulate 13 - SAS Postulate

- SAS Postulate: If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent.

D

By the SAS Postulate, $\Delta A B C \cong \Delta J K L$

By the SAS Postulate, $\Delta D E F \cong \triangle T U V$

E

Postulate 14 - ASA Postulate

- ASA Postulate: If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Using the Postulates

- State which postulate you can use to prove that these triangles are congruent. Explain using the sentence frame provided.

- These triangles are congruent by the SAS postulate because Between the two triangles, we have two sides and their included angles congruent to one another.

Using the Postulates

- State which postulate you can use to prove that these triangles are congruent. Explain using the sentence provided.

- These triangles are congruent by the ASA postulate because Between the two triangles, we have two angles and their included sides congruent to one another.

Using the Postulates

- State which postulate you can use to prove that these triangles are congruent. Explain using the sentence frame provided

- These triangles are congruent by the SAS postulate because Between the two triangles, we have two sides and their included angles congruent to one another.

Using the Postulates

- State which postulate you can use to prove that these triangles are congruent. Explain using the sentence frame provided.

- These triangles are congruent by the SSS postulate because Between the two triangles, we have the three sides each triangle congruent to one another.

Exit Ticket

Can the two triangles be proved congruent? If so, what postulate can be used to prove it? Use the following sentence frame to explain:
These triangles are congruent by the

Using the Postulates

Supply the missing statements and reasons in the following proof.
Given: E is the midpoint of $\overline{M J}$ $\overline{T E} \perp \overline{M J}$
Prove: $\triangle M E T \cong \triangle J E T$

Statements

1. E is the midpoint of $\overline{M J}$
2. $\overline{M E} \cong \overline{E J}$
3. $\overline{T E} \perp \overline{M J}$
4. $<M E T \cong<J E T$
5. $\overline{T E} \cong \overline{T E}$
6. $\triangle M E T \cong \triangle J E T$

Reasons

1. Given
2. Def. of Midpoint
3. Given
4. Def. of Perp. Lines
5. Reflexive
6. SAS Postulate
