Geometry: Unit 2

Segments, Rays, and Distance

Warm-up

Refer to the figure.

4. Name the three line segments that intersect at point A.
5. Name the line of intersection of planes GAB and FEH.
6. Do planes $G F E$ and $H B C$ intersect? Explain.

Segments, Rays, and Distance

- Content Objective: Students will be able to complete statements and answer problems related to line segments using the Segment Addition Postulate.
- Language Objective: Students will be able to state and use the Segment Addition Postulate to solve problems.

Segments and Rays

- Here is a reminder of the definitions, along with visual examples, of segments and rays, discussed in the previous lecture.

- Note: Since Segments have a fixed distance, then we can give a measure to it.

Congruence

- In geometry, two objects that have the same size and shape are called congruent.
- Congruent segments are segments that have equal lengths.
- Example: To indicate that $\overline{D E}$ and $\overline{F G}$ have equal lengths, we write $\boldsymbol{D E}=\boldsymbol{F} \boldsymbol{G}$.

- To indicate that $\overline{D E}$ and $\overline{F G}$ are congruent, we write

$$
\overline{D E} \cong \overline{F G}
$$

Midpoint and Bisector

- The midpoint of a segment is the point that divides the segment into two congruent segments.
- From the diagram, we see that:
$A P=P B$
So $\overline{A P} \cong \overline{P B}$
Thus, P is the midpoint of $\overline{A B}$

Segment Bisector

- A bisector of a segment is a line, segment, ray, or plane that intersects the segment at its midpoint.
- From the diagram, you can see that Line l is the bisector of $\overline{A B}$. $\overline{P Q}$ and plane X also bisect $\overline{A B}$.

Segment Addition

- Segment Addition Postulate:
- If \boldsymbol{B} is between \boldsymbol{A} and \boldsymbol{C}, then $A B+B C=A C$.

Example Using Segment Addition

B is between A and C, with $A B=\boldsymbol{x}, \boldsymbol{B C}=\boldsymbol{x}+\mathbf{6}$, and $\boldsymbol{A C}=\mathbf{2 4}$. Find:

- a) the value of x.

By the Segment Addition Postulate, we can write

$$
\begin{gathered}
A B+B C=A C \\
x+(x+6)=2 \\
2 x+6=24 \\
2 x=18 \\
x=9
\end{gathered}
$$

$$
\text { - b) } B C
$$

(a), we can plug it in to find the value of $B C$

$$
\begin{aligned}
B C & =x+6 \\
& =9+6 \\
& =15
\end{aligned}
$$

$$
x+(x+6)=24 \quad \text { With the value of } x \text { we got in part }
$$

Exit Ticket

- Refer to the diagram and complete the statement and solve the problem.

- 1. $\overrightarrow{B G}$ is the segment \qquad of $\overline{F H}$ passing through A creating__ segments $A F$ and $A H$.
- Using the above statement, Find the values of $A F$ and $A H$ if $F H=42$.

