SEMESTER ONE:

 FINAL TEST REVIEW
Unit 1 Transformations

\square For each Transformation, describe how each point should move.

1. $T:(x, y) \rightarrow(x+a, y+b):$

Every point moves a units (left if a is negative/right if a is positive) and b units (down if b is negative and up if b is positive.
2. R_{m} :

Every point maps to its image, forming a line that is perpendicular to the line " m " (you would put the specific line for your problem in place of " m "), with both image and pre-image being equidistant (same distance) from the line " m ".

Unit 1: Transformations

\square For each Transformation, describe how each point should move.
3. $R_{O, 90^{\circ}}$:

Every point moves 90° counterclockwise about the origin.
4. H_{O} :

Every point moves 180° about the origin (in either direction).

Unit 1: Transformations

\square For each Transformation, describe how each point should move.
5. $D_{O, k}$:

Every point moves to a point " k " times the distance from the center O .

Unit 1: Transformations

You may use the coordinateplaneto determine each of the following. Identify thetype of transformation and determinetheimage. Give your answer for the image as a coordinate point.

	Transformation Type	Image
10.T: $\mathrm{A} \rightarrow(\mathrm{x}+3, \mathrm{y}-5)$	Translation	$(-2,3)$
11. $\mathrm{Rx}: \mathrm{B} \rightarrow(, \ldots)$		
12. Ry: $\mathrm{C} \rightarrow(, \ldots)$		
13. $\mathrm{Ry}_{\mathrm{y}=\mathrm{x}} \mathrm{D} \rightarrow(-7,4)$	Reflection	$(4,-7)$
14. $R_{90}: \mathrm{E} \rightarrow(, \ldots)$		
15. R-90: $\mathrm{F} \rightarrow(5,3)$	Rotation	$(3,-5)$
16. $\mathrm{D}_{0,3}$: $\mathrm{G} \rightarrow\left(,{ }_{\text {- }}\right.$)		
17. $\mathrm{D}_{0,-2:} \mathrm{H} \rightarrow(\underline{2}, 4)$	Dilation	$(-4,-8)$
18. $\mathrm{D}_{0,12} \mathbf{2} \mathrm{I} \rightarrow(-6 ; 8)$	Dilation	$(-3,-4)$

Unit 2: Geometric Vocabulary

\square Recall some of the key terms from this section:

Point
Collinear
Contains
Segment Addition Angle Addition
Angle Bisector
Vertical

Line
Coplanar
Opposite

Supplementary
Congruent

Plane Intersect

Adjacent
Midpoint
Complementary

Unit 2: Geometric Vocabulary

\square Use these terms to fill in blanks:

1. $F A+A H=$ FH by Segment Addition Postulate.
2. $<B A F \cong \leq H A G$ because they are Vertical angles.
3. $<F A B$ and $<B A E$ are Complementary angles because they add up to 90°.

Unit 2: Geometric Vocabulary

\square Be ready to solve equations using segment and angle addition:
3.) $m<F O E=3 x-1, m<E O D=72^{\circ}$, and $m<F O D=6 x+11$

$$
\begin{aligned}
& 3 x-1+72=6 x+11 \\
& 3 x+71=6 x+11 \\
& 3 x=60 \\
& x=20
\end{aligned}
$$

4.) $E B=6 x-8, O B=12$, and $O E=4 x-2$

$$
\begin{aligned}
& 4 x-2+12=6 x-8 \\
& 4 x+10=6 x-8 \\
& 2 x=18 \\
& x=9
\end{aligned}
$$

Unit 3: Proofs

\square Be ready for another round of proofs:
Proof 1:
Given: $M P=N Q$
Prove: $M N=P Q$
Statement

1. $\mathrm{MP}=\mathrm{NQ}$
2. $\frac{N P}{}$ 3. $\mathrm{MP}=\frac{N P}{M N}+\frac{N P}{P N}$
3. $\mathrm{NQ}=\frac{P N}{M+N P=N P+P Q}$
4. $\frac{M N=P Q}{}$

5. $\frac{\text { Substitution }}{\text { 5. }}$ Subtraction

Unit 4: Parallel Lines

\square Use the properties of parallel lines to find angle measures. Remember the big three that we focused on in this unit:

Corresponding Angles are Congruent

$$
\text { Corr. }<^{\prime} \text { s are } \cong
$$

Alternate Interior Angles (Alt. Int.) are Congruent

$$
\text { Alt. Int. }<^{\prime} \text { s are } \cong
$$

Same-Side Interior Angles (S-S Int.) are Supplementary

$$
S-S \text { Int. }<^{\prime} \text { s are supp. }
$$

Unit 4: Parallel Lines

\square Use those properties to make equations and find angle measures using a diagram (you may also be asked to explain your answers):
1.

$$
\begin{gathered}
\text { If } \mathrm{m} \angle 1=115^{\circ} \text {, then } \mathrm{m} \angle 2= \\
\text { Corr. }
\end{gathered}
$$ angles are \qquad \cong 70° because if \qquad ,

2. If $\mathrm{m} \angle 5=70^{\circ}$, then $\mathrm{m} \angle 8=$ angles are \qquad \cong
Alt. Int.
\qquad .
3. If $\mathrm{m} \angle 4=120^{\circ}$, then $\mathrm{m} \angle 5=$ \qquad because if ,

S-S Int.
angles are \qquad .

Unit 4: Parallel Lines

\square Use those properties to make equations and find angle measures using a diagram (you may also be asked to explain your answers):

Ex: $m<8=4 x+12$ and $m<2=6 x-4$

$$
\begin{aligned}
& 4 x+12=6 x-4 \\
& 16=2 x \\
& 8=x
\end{aligned}
$$

Unit 4: Parallel Lines

\square You can also use those properties to identify the existence of parallel lines in a diagram

$$
\begin{gathered}
\text { 1. }<2 \cong<9 \\
\overline{A B} \| \overline{F C} \\
\text { 2. } m<2=m<5 \\
\text { None } \\
\text { 3. }<6 \cong<7 \\
\overline{E F} \| \overline{C D}
\end{gathered}
$$

Unit 4: Parallel Lines

\square You can also use those properties to identify the existence of parallel lines in a diagram

4. $\mathrm{m} \angle 3=\mathrm{m} \angle 7$

Yes; $\quad \overline{A B} / / \overline{E F}$
Explain: Because when lines ACBAT and Corr. <'s are \cong, then lines are //.

Unit 5: Triangles

\square Remember the 5 Postulates/Theorems we use for Proving That Triangles are congruent:
\square Side-Side-Side SSS
\square Side-Angle-Side SAS
\square Angle-Side-Angle ASA
\square Angle-Angle-Side AAS
\square Hypotenuse-Leg HL
\square Oh, and Let's not forget about...

CPCTC

Unit 5: Triangles

\square Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

Unit 5: Triangles

\square Use these postulates/theorems to label diagrams and name the missing parts to satisfy them:

$$
\text { 6. } \frac{\angle \mathrm{B}}{\mathrm{AB}} \cong \frac{C \mathrm{C}}{\mathrm{CD}}
$$

AAS Theorem

Unit 5: Triangles

\square Use these postulates/theorems to label diagrams and name the missing parts to satisfy them:

$$
\text { 9. } \overline{\mathrm{AB}} \cong \overline{\mathrm{AD}} \cong \overline{\mathrm{CD}}
$$

SSS Postulate

Unit 5: Triangles

\square Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

$\triangle \mathrm{ABC} \cong \triangle C D A$
by SSS

Unit 5: Triangles

\square Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

C is the midpoint of $\overline{\mathrm{BD}}$;
$\angle \mathrm{A} \cong \angle \mathrm{E}$

$$
\triangle \mathrm{ABC} \cong \triangle E D C
$$

by $A A S$

Unit 6: Quadrilaterals

\square Remember the properties of the Quadrilaterals, and how to use them to make equations.

Complete the chart by places check marks in the appropriate places.

	Property	Parallelogram	Rectangle	Rhombus	Square
1)	Opposite sides are parallel	X	X	X	X
2)	Opposite sides are congruent	X	X	X	X
3)	Opposite angles are congruent	X	X	X	X
4)	A diagonal forms two congruent angles	X	X	X	X
5)	Diagonals bisect each other	X	X	X	X
6)	Diagonals are congruent		X		X
7)	Diagonals are perpendicular			X	X
8)	A diagonal bisects two angles			X	X
9)	All angles are right angles		X		X
10)	All sides are congruent			X	X

Unit 6: Quadrilaterals

\square Remember the properties of the Quadrilaterals, and how to select the most best one from a given property.

Match each shapenametothepropertiesithas, Answerswill berepeated.
[A]parallegram
[B] rectangle [C] hombus
[D] square
[E]trapezoid

1. A oppositesides yre congruent
2. A oppositeanglesarecongruent
3. B diagonasare congruent
4. D all sidesand anglesare congruent
5. C diagonals srepeppendicular
6. A diggonalare bisected
7. C andegarebisected
8. B aldanglesareight angles
9. A oppositesidesareparallel
10. E not aprallelogram

Unit 6: Quadrilaterals

\square And remember the Trapezoid...
\square It is NOT a Parallelogram! It has its own Properties.
\square Ex: Find the value of x in the figure.
$x+10=\frac{1}{2}(27+17) \quad$ (Why?)
$x+10=\frac{1}{2}(44)$
$x+10=22$
$x=12$

