SEMESTER ONE: FINAL TEST REVIEW

Unit 1 Transformations

For each Transformation, describe how each point should move.

1. T: $(x, y) \rightarrow (x + a, y + b)$:

Every point moves a units (left if a is negative/right if a is positive) and b units (down if b is negative and up if b is positive.

2. *R*_{*m*}:

Every point maps to its image, forming a line that is **perpendicular** to the line "m" (you would put the specific line for your problem in place of "m"), with both image and pre-image being **equidistant** (same distance) from the line "m".

Unit 1: Transformations

For each Transformation, describe how each point should move.

3. *R*_{0,90°}:

Every point moves 90° counterclockwise about the origin.

4. *H*₀:

Every point moves 180° about the origin (in either direction).

Unit 1: Transformations

For each Transformation, describe how each point should move.

5. *D*_{*O*,*k*}:

Every point moves to a point "k" times the distance from the center O.

Unit 1: Transformations

You may use the coordinate plane to determine each of the following. Identify the type of transformation and determine the image. Give your answer for the image as a coordinate point.

	Transformation Type	Image
10.T: $A \rightarrow (x + 3, y - 5)$	Translation	(-2,3)
11. $\mathbf{R}_{\mathbf{x}}: \mathbf{B} \rightarrow (_,_)$		
12. R y: C → (_,_)		
13. Ry=x: D → (<u>7,4</u>)	Reflection	(4, -7)
14. $\mathcal{R}_{90}: E \rightarrow (,)$		
15. $\mathcal{R}_{90}: \mathbf{F} \rightarrow (\underline{5},\underline{3})$	Rotation	(3, -5)
16. Do, 3: G → (_,_)		
17. Do, -2: H → (2,4)	Dilation	(-4, -8)
18. D 0, ⁴ / ₂ : I → (<u>-6,8</u>)	Dilation	(-3,-4)

Unit 2: Geometric Vocabulary

Recall some of the key terms from this section:

Point	Line	Plane
Collinear	Coplanar	Intersect
Contains	Opposite	Adjacent
Segment Addition	Angle Addition	Midpoint
Angle Bisector	Supplementary	Complementary
Vertical	Congruent	

Unit 2: Geometric Vocabulary

- $2 < BAF \cong \leq HAG$ because they are <u>Vertical</u> angles.
- 3. < FAB and < BAE are <u>Complementary</u> angles because they add up to <u>90°</u>.

Unit 2: Geometric Vocabulary

Be ready to solve equations using segment and angle addition:

3.)
$$m < FOE = 3x - 1, m < EOD = 72^{\circ}, \text{ and } m < FOD = 6x + 11$$

 $3x - 1 + 72 = 6x + 11$
 $3x + 71 = 6x + 11$
 $3x = 60$
 $x = 20$
4.) $EB = 6x - 8, OB = 12, \text{ and } OE = 4x - 2$
 $4x - 2 + 12 = 6x - 8$
 $4x + 10 = 6x - 8$
 $2x = 18$
 $x = 9$

Unit 3: Proofs

□ Be ready for another round of proofs:

<u>Proof 1:</u> Given: MP = NQ Prove: MN = PQ	Q N N
Statement	M Reason
1. MP = NQ	1. Given
2. $\frac{NP = NP}{3. \text{ MP} = MN + NP}$	2. Reflexive 3. Segment Addition Postulate
3. $MI = \underline{MN} + \underline{NI}$ $NQ = \underline{PN} + \underline{PQ}$ $4. \underline{MN + NP} = NP + PQ$ $5. \underline{MN} = PQ$	4. Substitution 5. Subtraction

- Use the properties of parallel lines to find angle measures. Remember the big three that we focused on in this unit:
- Corresponding Angles are Congruent

Corr. <' s are \cong

- Alternate Interior Angles (Alt. Int.) are Congruent Alt. Int. <' s are \cong
- Same-Side Interior Angles (S-S Int.) are Supplementary

$$S - S$$
 Int. <' s are supp.

Use those properties to make equations and find angle measures using a diagram (you may also be asked to explain your answers):

Use those properties to make equations and find angle measures using a diagram (you may also be asked to explain your answers):

□ Ex: m < 8 = 4x + 12 and m < 2 = 6x - 4

$$4x + 12 = 6x - 4$$
$$16 = 2x$$
$$8 = x$$

You can also use those properties to identify the existence of parallel lines in a diagram

1. < 2 \cong < 9 $\overline{AB} \parallel \overline{FC}$ 2. m < 2 = m < 5None 3. < 6 \cong < 7 $\overline{EF} \parallel \overline{CD}$

You can also use those properties to identify the existence of parallel lines in a diagram

- Remember the 5 Postulates/Theorems we use for Proving That Triangles are congruent:
- □ Side-Side SSS
- □ Side-Angle-Side SAS
- Angle-Side-Angle ASA
- Angle-Angle-Side AAS
- □ Hypotenuse-Leg **HL**
- Oh, and Let's not forget about...

CPCTC

Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

Use these postulates/theorems to label diagrams and name the missing parts to satisfy them:

Use these postulates/theorems to label diagrams and name the missing parts to satisfy them:

SSS Postulate

Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

 $\overrightarrow{DA} \cong \overrightarrow{BC}; \ \overrightarrow{DC} \cong \overrightarrow{BA}$ $\triangle ABC \cong \triangle \underline{CDA}$ by \underline{SSS} $B \longrightarrow C$

Use these postulates/theorems to label diagrams and name the appropriate congruent statements:

C is the midpoint of \overline{BD} ; $\angle A \cong \angle E$

 by <u>AAS</u>

Unit 6: Quadrilaterals

 Remember the properties of the Quadrilaterals, and how to use them to make equations.

Complete the chart by places check marks in the appropriate places.

	Property	Parallelogram	Rectangle	Rhombus	Square
1)	Opposite sides are parallel	X	X	X	X
2)	Opposite sides are congruent	X	Х	X	X
3)	Opposite angles are congruent	X	Х	X	X
4)	A diagonal forms two congruent angles	X	Х	X	X
5)	Diagonals bisect each other	X	X	X	X
6)	Diagonals are congruent		Х		X
7)	Diagonals are perpendicular			X	X
8)	A diagonal bisects two angles			X	X
9)	All angles are right angles		Х		X
10)	All sides are congruent			X	X

Unit 6: Quadrilaterals

Remember the properties of the Quadrilaterals, and how to select the most best one from a given property.

Match each shape name to the properties it has. Answers will be repeated.							
	[A] para	illelogram	[B] rectangle	[C] rhombus	[]	D] square	[E] trapezoid
1.	A	_ opposite sides	are congruent	<mark>6</mark>	Α	diagonals a	re bisected
2.	Α	_ opposite angle	s are congruent	7	С	angles are b	pisected
3.	В	_ diagonals are	congruent	<mark>8</mark>	В	all angles a	re right angles
4.	D	_ all sides and a	ngles are congruent	9	А	opposite si	des are parallel
5.	С	_ diagonals are p	perpendicular	10.	E	not_a paral	lelogram

Unit 6: Quadrilaterals

□ And remember the Trapezoid...

□ It is NOT a Parallelogram! It has its own Properties.

 \Box Ex: Find the value of x in the figure.

 $x + 10 = \frac{1}{2}(27 + 17)$ (Why?)

 $x + 10 = \frac{1}{2}(44)$ x + 10 = 22x = 12

