GEOMETRY UNIT 12

SLOPE AND MIDPOINT

WARM-UP

Find the Slope of the line through the following pairs of points.

1. $(7,2)$ and $(2,7)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-2}{2-7}
$$

$$
=-\frac{5}{5}=-1
$$

3. $(1,6)$ and $(4,6)$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-6}{4-1} \\
=\frac{0}{3}=0
\end{gathered}
$$

2. $(0,0)$ and (5,1)

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-0}{5-0}
$$

$$
=\frac{1}{5}
$$

4. $(3,3)$ and $(3,7)$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-3}{3-3} \\
=\frac{4}{0}=?
\end{gathered}
$$

Slope is undefined

SLOPE AND MIDPOINT

- Content Objective: Students will be able to identify the slopes and midpoints of lines.
- Language Objective: Students will be able to calculate the slope and midpoint of a line given two points.

SLOPE: RECAP

- The Slope of a line is the ratio of change in y
(vertical change, or rise) to the change in x (horizontal change, or run).
- Parallel Lines have slopes that are Equal
- Perpendicular Lines have slopes that have a product of $\mathbf{- 1}$
- Positive slopes(\#2 on the warm-up) rise to the right.
- Negative slopes (\#1 on the warm-up) fall to the right.

SLOPE: CONTINUED

- From the warm-up, you noticed something about the answers for problems 3 and 4.

3. $(1,6)$ and $(4,6)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-6}{4-1}$
$=\frac{0}{3}=0$
4. $(3,3)$ and $(3,7)$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-3}{3-3} \\
=\frac{4}{0}=?
\end{gathered}
$$

Slope is undefined

On the two graphs provided, graph the points given of these two problems. Name the kind of line the points make.

SLOPE: CONTINUED

3.) $(1,6)$ and $(4,6)$
4.) $(3,3)$ and $(3,7)$

Conclusion: Horizontal lines have a slope of $\mathbf{0}$ and Vertical lines have an _undefined slope.

MIDPOINT

- As a reminder, the Midpoint of a line segment is a point M such that $A M=M B$

- We can calculate the value of this midpoint if we have the values of the endpoints.
- Ex: If $A=x_{1}$ and $B=x_{2}$, then the value of M will be

$$
M=\frac{x_{1}+x_{2}}{2}
$$

The average of the values of A and B
Key Question: Could this idea also be used to find the midpoint of two points on the (x, y) - coordinate plane?

THE MIDPOINT FORMULA

Theorem 13-5: The midpoint of the segment that joins points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is the point

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 1: Find the midpoint of the segment that joins $(-11,3)$ and $(8,-7)$.

Solution:

$$
\begin{gathered}
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
M=\left(\frac{-11+8}{2}, \frac{3+(-7)}{2}\right) \\
M=\left(\frac{-3}{2}, \frac{-4}{2}\right)=\left(\frac{-3}{2},-\mathbf{2}\right)
\end{gathered}
$$

PRACTICE

Find the midpoint of the segment that joins the points given.
2.) $(2,1)$ and $(8,-5)$
$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
M=\left(\frac{2+8}{2}, \frac{1+(-5)}{2}\right)
$$

$$
M=\left(\frac{10}{2}, \frac{-4}{2}\right)=(5,-2)
$$

3.) $(1,-3)$ and $(5,1)$

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
M=\left(\frac{1+5}{2}, \frac{-3+1}{2}\right)
$$

$$
M=\left(\frac{6}{2}, \frac{-2}{2}\right)=(\mathbf{3},-\mathbf{1})
$$

OTHER USE FOR MIDPOINT

Example: \boldsymbol{M} is the midpoint of $\overline{\boldsymbol{A B}}$, where the coordinates of \boldsymbol{A} are given. Find the coordinates of \boldsymbol{B}

A: $(1,-3) ; M:(5,1)$
Solution: From the equation, we have

$$
(5,1)=\left(\frac{1+x}{2}, \frac{-3+y}{2}\right)
$$

Separate to solve for \boldsymbol{x} and \boldsymbol{y}.

For x :
$5=\frac{1+x}{2}$
For y:
$1=\frac{-3+y}{2}$
Thus, the coordinates of \boldsymbol{B} are $(9,5)$

$$
\begin{array}{cc}
10=1+x & 2=-3+y \\
\boldsymbol{x}=\mathbf{9} & \boldsymbol{y}=\mathbf{5}
\end{array}
$$

GROUP PRACTICE - SLOPES AND MIDPOINT

Find the midpoint of the segment that joins the points given.
1.) $(3,5)$ and $(9,-7)$

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
M=\left(\frac{3+9}{2}, \frac{5+(-7)}{2}\right)
$$

$$
M=\left(\frac{12}{2}, \frac{-2}{2}\right)=(\mathbf{6},-\mathbf{1})
$$

2.) $(2,5)$ and $(-1,2)$

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
M=\left(\frac{2+(-1)}{2}, \frac{5+2}{2}\right)
$$

$$
M=\left(\frac{-\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{7}}{\mathbf{2}}\right)
$$

GROUP PRACTICE - SLOPES AND MIDPOINT

Find the midpoint of the segment that joins the points given.
3.) $(0,4)$ and $(4,3)$

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
M & =\left(\frac{0+4}{2}, \frac{4+3}{2}\right) \\
M & =\left(\frac{4}{2}, \frac{7}{2}\right)=\left(2, \frac{7}{2}\right)
\end{aligned}
$$

GROUP PRACTICE - SLOPES AND MIDPOINT

Find the slope and midpoint of the segment that joins the points given.
4.) $(3,-8)$ and $(-5,2)$

Slope

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{2-(-8)}{-5-3} \\
& m=\frac{10}{-8}=-\frac{5}{4}
\end{aligned}
$$

Midpoint

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
M & =\left(\frac{3+(-5)}{2}, \frac{-8+2}{2}\right)
\end{aligned}
$$

$$
M=\left(\frac{-2}{2}, \frac{-6}{2}\right)=(-\mathbf{1},-\mathbf{3})
$$

GROUP PRACTICE - SLOPES AND MIDPOINT

Find the slope and midpoint of the segment that joins the points given.
5.) $(-3,4)$ and $(7,8)$

Slope

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{8-4}{7-(-3)} \\
m & =\frac{4}{10}=\frac{2}{5}
\end{aligned}
$$

Midpoint

$$
\begin{aligned}
& M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& M=\left(\frac{-3+7}{2}, \frac{4+8}{2}\right) \\
& M=\left(\frac{4}{2}, \frac{12}{2}\right)=(2,6)
\end{aligned}
$$

GROUP PRACTICE - SLOPES AND MIDPOINT

Find the slope and midpoint of the segment that joins the points given. 6.) $(-7,11)$ and $(1,-4)$

Slope

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m=\frac{-4-11}{1-(-7)} \\
m=\frac{-15}{8}
\end{gathered}
$$

Midpoint

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
M & =\left(\frac{-7+1}{2}, \frac{11+(-4)}{2}\right)
\end{aligned}
$$

$$
M=\left(\frac{-6}{2}, \frac{7}{2}\right)=\left(-3, \frac{7}{2}\right)
$$

