Geometry Unit 5

The Isosceles Triangle Theorems

The Isosceles Triangle Theorems

 <u>Content Objective</u>: Students will be able to solve problems and proofs involving isosceles triangles.

 Language Objective: Students will be able to write equations for isosceles triangles, solving for variables.

Isosceles Triangles

- An Isosceles Triangle has the following properties
 - 2 Congruent Sides (known as the legs)
 - 1 Side with its own measure (known as the **base**)
 - The angle included between the legs is known as the **vertex angle**
 - Angles connected to the base are known as the base angles

Theorem 4-1

 <u>The Isosceles Triangle Theorem</u>: Base angles of a isosceles triangle are congruent.

Given: $\overline{AB} \cong \overline{AC}$ Prove: $\langle B \cong \langle C \rangle$

<u>Plan for Proof</u>:

- < B and < C are \cong by using <u>CPCTC</u>
- To get the two triangles we need, we have to bisect < A with \overline{AD} .
- Thus, the Diagram suggests that you first prove $\Delta BAD \cong \Delta CAD$.

Example : Complete this Proof

Theorem 4-1: The Corollaries

- Theorem 4-1 produces 3 Corollaries:
 - Corollary 1: An equilateral triangle is also equiangular.
 - Corollary 2: An equilateral triangle has three 60° angles.
 - Corollary 3: The bisector of the vertex angle of an isosceles triangle is perpendicular to the base at its midpoint.

- <u>Theorem 4-2</u>: If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Plan for Proof:

- \overline{AB} and \overline{AC} are \cong by using <u>CPCTC</u>
- To get the two triangles we need, we have to bisect < A with \overline{AD} .
- Thus, the Diagram suggests that you first prove $\Delta BAD \cong \Delta CAD$.

Example : Complete this Proof

With this setup, we can prove this theorem in the following way:

Statements	Reasons B D
1. $ < B \cong < C $	1. Given
2. \overline{AD} bisects $< A$	 Each angle has a unique bisector
$_{3.} < BAD \cong < CAD$	3. Def. of Perp. Lines
4. $\overline{AD} \cong \overline{AD}$	4. Reflexive Property
5. $\triangle BAD \cong \triangle CAD$	5. AAS Theorem
$6 \overline{AB} \simeq \overline{AC}$	6. CPCTC

Theorem 4-2: The Corollaries

- Theorem 4-2 produces 1 Corollary:
 - Corollary: An equiangular triangle is also equilateral.
- But enough about proofs...
- Now that we know some properties of Isosceles triangles, we can use this knowledge to solve for variable in them.

Examples with Isosceles Triangles

Solve for the value of x.

Using Theorem 4-1, we can say that the third angle in this triangle has measure 50° .

With that, we can make an equation and solve:

$$x + 50 + 50 = 180$$

 $x + 100 = 180$
 $x = 80$

Examples with Isosceles Triangles

Solve for the value of x.

Using Theorem 4-2, we can set the sides opposite our congruent angles equal to each other, making the following equation:

$$18 = 4x - 6$$
$$24 = 4x$$
$$x = 6$$