## Geometry Unit 5

The Isosceles Triangle Theorems

## The Isosceles Triangle Theorems

- Content Objective: Students will be able to solve problems and proofs involving isosceles triangles.

Language Objective: Students will be able to write equations for isosceles triangles, solving for variables.

## Isosceles Triangles

- An Isosceles Triangle has the following properties
- 2 Congruent Sides (known as the legs)
- 1 Side with its own measure (known as the base)
- The angle included between the legs is known as the vertex angle
- Angles connected to the base are known as the base angles



## Theorem 4-1

- The Isosceles Triangle Theorem: Base angles of a isosceles triangle are congruent.

Given: $\overline{A B} \cong \overline{A C}$
Prove: $<B \cong<C$


Plan for Proof:

- $\angle B$ and $<C$ are $\cong$ by using $\quad$ CPCTC
- To get the two triangles we need, we have to bisect $<A$ with $\overline{A D}$.
- Thus, the Diagram suggests that you first prove $\triangle B A D \cong \triangle C A D$.


## Example : Complete this Proof

With this setup, we can prove this theorem in the following way:

## Statements

1. $\overline{A B} \cong \overline{A C}$
2. $\overline{A D}$ bisects $<A$
3. $<\mathrm{BAD} \cong<C A D$
4. $\overline{A D} \cong \overline{A D}$
5. $\triangle B A D \cong \triangle C A D$
6. $<B \cong<C$


Reasons

1. Given
2. Each angle has unique bisector
3. Def. Angle Bisector
4. Reflexive Property
5. SAS Postulate
6. CPCTC

## Theorem 4-1: The Corollaries

- Theorem 4-1 produces 3 Corollaries:
- Corollary 1: An equilateral triangle is also equiangular.
- Corollary 2: An equilateral triangle has three $60^{\circ}$ angles.
- Corollary 3: The bisector of the vertex angle of an isosceles triangle is perpendicular to the base at its midpoint.


## Theorem 4-2

- Theorem 4-2: If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Given: $<B \cong<C$
Prove: $\overline{A B} \cong \overline{A C}$


## Plan for Proof:

- $\overline{A B}$ and $\overline{A C}$ are $\cong$ by using $\quad$ CPCTC. .
- To get the two triangles we need, we have to bisect $<A$ with $\overline{A D}$.
- Thus, the Diagram suggests that you first prove $\triangle B A D \cong$ $\triangle C A D$ .


## Example : Complete this Proof

With this setup, we can prove this theorem in the following way:

## Statements

$$
\text { 1. }<B \cong<C
$$

2. $\overline{A D}$ bisects $<A$
3. $<\mathrm{BAD} \cong<C A D$
4. $\overline{A D} \cong \overline{A D}$
5. $\triangle B A D \cong \triangle C A D$
6. $\overline{A B} \cong \overline{A C}$

7. Each angle has a unique bisector
8. Def. of Perp. Lines
9. Reflexive Property
10. AAS Theorem
11. CPCTC

## Theorem 4-2: The Corollaries

- Theorem 4-2 produces 1 Corollary:
- Corollary: An equiangular triangle is also equilateral.
- But enough about proofs...
- Now that we know some properties of Isosceles triangles, we can use this knowledge to solve for variable in them.


## Examples with Isosceles Triangles

- Solve for the value of $x$.


Using Theorem 4-1, we can say that the third angle in this triangle has measure $50^{\circ}$.
With that, we can make an equation and solve:

$$
\begin{gathered}
x+50+50=180 \\
x+100=180 \\
x=80
\end{gathered}
$$

## Examples with Isosceles Triangles

- Solve for the value of $x$.


Using Theorem 4-2, we can set the sides opposite our congruent angles equal to each other, making the following equation:

$$
\begin{gathered}
18=4 x-6 \\
24=4 x \\
x=6
\end{gathered}
$$

