GEOMETRY: UNIT I: TRANSFORMATIONS
 Translations

WARMUP

- Watch the following video:
http://www.pbslearningmedia.org/resource/muen-math-gtranslation/translation/

TRANSLATIONS

Objective: Students will be able to do the following, regarding geometric transformations.

- Write Transformations Symbolically and justify their choice.
- Explain the movement of points for a given transformation.
- Draw an image under each transformation.

ISOMETRY:A REMINDER

- An Isometric Transformation has the following properties are preserved:

D Distance (All lengths stay the same)
Angle measure (All angles stay the same)

- Parallelism (All lines that are parallel stay parallel)

Collinearity (All points on a line remain on a line)

- In short, the transformed figure (lmage) is the same shape and size as the original figure (Pre-Image).

TRANSLATIONS

- A transformation that glides all points of the plane the same distance in the same direction is called a translation.
- When working on the coordinate plane, a vector is used to describe the fixed distance and the given direction often denoted by $\langle x, y\rangle$. The x value describes the effect on the x coordinates (right or left) and the y value describes the effect on the y coordinates (up or down).

The pre-image and image have the same shape and size.

$$
T_{\langle x, y\rangle}(\Delta A B C)=\Delta A^{\prime} B^{\prime} C^{\prime}
$$

TRANSLATIONS

- If a translation maps A to A^{\prime}, B to B^{\prime}, and C to C^{\prime}, Points A, B, and C glide along parallel or collinear segments and $A A^{\prime}=B B^{\prime}=C C^{\prime}$.

The pre-image and image have the same shape and size.

$$
T_{\alpha x, y\rangle}(\Delta A B C)=\Delta A^{\prime} B^{\prime} C^{\prime}
$$

TRANSLATION EXAMPLE

Given $\triangle A B C$ with $A(-I, I), B(2,4), C(4, I)$, translate $\triangle A B C$ left 4 units and up I unit.

Notation: $T_{<x-4, y+1>} \triangle A B C$

Pre-Image

Image

TRANSLATION EXAMPLE 2

Given the pre-image $\triangle A B C$ with $\mathrm{A}(-\mathrm{I}, \mathrm{I}), \mathrm{B}(2,4), \mathrm{C}(4, \mathrm{I})$, along with it image $\triangle A^{\prime} B^{\prime} C^{\prime}$ with the points on the graph, the translation by filling in the notation.

Image

Notation: $T_{<x-_y+_}>\triangle A B C$

Notation: $T_{<x+1, y-4>} \triangle A B C$

TRANSLATION:
 FROM PRE-IMAGETO IMAGE,AND VICEVERSA

- Given the translation $T:(x, y) \rightarrow(x+4, y+2)$, give the Image if a Preimage is given, or a pre-image if the image is given.
- Given - Pre-Image: (-4,-4)

$$
\longrightarrow \text { Image: }\left(\underset{(0,-2)}{(},-_\right)
$$

- Given - Image: $(6,0)$ \square Pre-Image: (\qquad , \qquad
$(2,-2)$
- Given - Image: $(0,5)$ Pre-Image: (\qquad , -

CLASSROOM ACTIVITY

- Go to page 585 of your textbook.
- Work through problems I-7 of the "Classroom Exercises" section with your group.
- When you are done, explain in your own words what a translation does to a point. Be brief, but not lazy (i.e. Don't say "It moves it").

