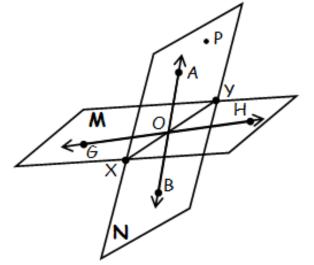
Geometry – Unit 2

Test Review/Breakdown

Identify By Notation – 4 Problems

You will be given the notation of an object (Line, Ray, Segment, etc.). All you have to do is identify what type of object is being described.

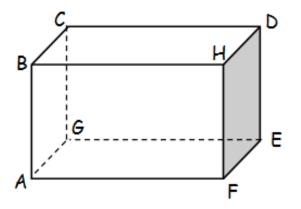
Object	Answer
\overleftarrow{AB}	Line
< ABC	Angle
AB	Segment Length
m < ABC	Angle Measure


Using A Diagram (First Set) – 7 Problems

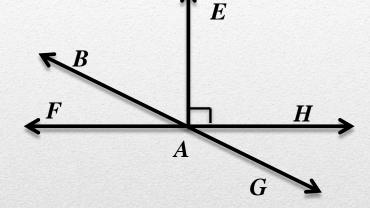
You will be given a Diagram, along with a word bank. Use the words given to fill in statements regarding the diagram.

1.) A, O, H, and P are Non-Coplanar

2.) Plane M <u>contains</u> \overrightarrow{XY} .

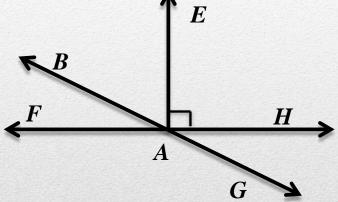

3.) H, O, and B, are Coplanar

Using A Diagram (Second Set) – 5 Problems


You will be given a second Diagram. You will have to identify and write correct terms based off of the diagram.

- 1.) Points E, G, F and <u>A</u> are coplanar.
- 2.) Name two lines that intersect at point H. \overrightarrow{DH} \overrightarrow{BH} .
- 3.) Name a plane that does not intersect with plane DEFH. <u>ABCG</u>.

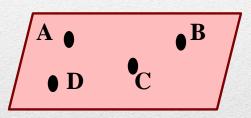
Using A Diagram (Third Set) – 5 Problems


You will be given a third Diagram, along with a word bank. You will fill in statements using the words in the word bank.

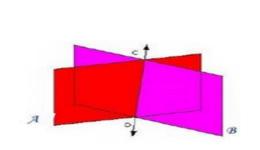
- 1. $< BAF \cong < HAG$ because they are <u>Vertical</u> angles.
- 2. $BA + AG = \underline{BG}$ by the <u>Segment Addition</u> Postulate.
- 3. < *BAF* and < *BAH* are <u>Supplementary</u> angles because they add up to <u>180°</u>.
- 4. $m < EAH + \leq HAG = m < EAG$ by the <u>Angle Addition Postulate</u>.

Using A Diagram (Fourth Set) – 2 Problems

You will be given a fourth Diagram, which will be the same diagrams as the one in the previous set. You will complete statements (similar to the warm-ups).

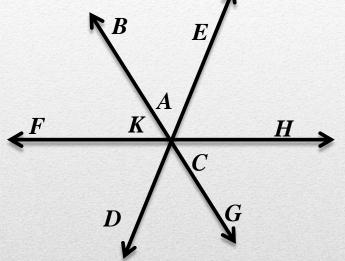

1.) \overrightarrow{BG} is the segment <u>Bisector</u> of \overrightarrow{FH} passing through <u>Midpoint</u> A creating <u>Congruent</u> segments AF and AH.


2.) If \overrightarrow{AB} was the angle <u>Bisector</u> of $\langle EAF$, then $\langle EAB$ and $\langle BAF$ would be <u>Congruent</u> angles.


Correcting the Statement – 3 Problems

You will be given a statement that is given to be **False**. You will have to correct the statement using a complete sentence, as well as sketch a diagram of what the correct statement should be.

- 1.) A plain is made up of exactly 3 points. A plane is made up of AT LEAST 3 points (There could be more)
- **2.)** If two lines intersect, then at least one plane contains the lines.
 - Exactly one plane contains the lines (Theorem 1-3).
- **3.)** If two planes intersect, then their intersection is a line segment.
 - The intersection of two planes is a line (Postulate 9)



Using A Diagram (Final Set) – 4 Problems

You will be given one last Diagram. You will use the diagram to set up equations and solve for x.

1.)
$$< BKF = 5x + 12$$
 and $< HCG = 4x + 22$

$$5x + 12 = 4x + 22$$
$$x = 10$$

2.) DA = 3x + 20, AE = 6x - 17, and DE = 48 3x + 20 + 6x - 17 = 48 9x + 3 = 48 9x = 45x = 5

Main Idea: Use any combination of Segment Addition, Angle Addition, Complementary, Supplementary, and Vertical Angles to set up equations.