Geometry Unit 3: Proofs

TEST STUDY GUIDE/BREAKDOWN

Identify the Property, Postulate, Theorem...With a diagram - 2 Problems

- You will be given a statements, along with a diagram. You must Identify which postulate, property, definition, or theorem is being demonstrated in the statement.
- Examples:

1.) AF + FE = AE

Segment Addition Postulate

4.) If *F* is the midpoint of \overline{AE} , then $AF = \frac{1}{2}AE$

Midpoint Theorem

Identify the Property, Postulate, Theorem... - 10 Problems

 You will be given a statements. You must Identify which postulate, property, definition, or theorem is being demonstrated in the statement.

• Examples:

7.) If $m < A + m < B = 180^{\circ}$ and $m < C + m < D = 180^{\circ}$, then m < A + m < B = m < C + m < D

Substitution Property

10.) If MQ = MP + PQ and MP + PQ = RS, then MQ = RS.

Substitution/Transitive Property

Using Theorems – 4 problems

- You will be given an incomplete statement of a theorem.
 You will need to complete the statement.
- Example:

14.) Angle Bisector Theorem: If \overrightarrow{BD} bisects $\langle ABC$, then...

 $m < ABD = \frac{1}{2}ABC$ and $m < DBC = \frac{1}{2}ABC$

17.) Theorem 2-5: If two lines form congruent adjacent angles, then...

The lines are perpendicular

Using Definitions – 4 problems

- You will be given an incomplete definition. You will need to complete the definition.
- Examples:
- 11.) Definition of midpoint: If M is the midpoint of \overline{AB} , then...

AM = MB

18.) Definition of Perpendicular Lines: Two perpendicular lines intersect...

To form right angles (90°)

Proofs – 5 Total

You will be given 2 proofs with all of the statements filled in, and you must give the reasons. 2 more proofs will have the reasons filled in, and you must give the statements. And 1 final proof where you must fill in the blank, with a mix of blank statements and reasons.

Proofs – Example 1

Proof 1:

Given: 6x + 5 = 23Prove: x = 3

Statement	Reason
1.) $6x + 5 = 23$	1.) Given
2.) $6x = 18$	2.) Subtraction Property
3.) $x = 3$	3.) Division Property

Proofs – Example 2

Proof 3: Given: MP = NQ Prove: MN = PQ

		Staten	nent		
1.		MP =	NO		
2.		NP = N	IP		
3.	MP =		+	NP	
	NQ =	<i>NP</i>	+	<i>PO</i>	
4.	MN + N	NP = NP + P	Q	Ľ	
5.		MN = P	0		

Reason				
1.	Given			
2.	Reflexive			
3.	Segment Addition Postulate			
4.	Substitution Property			
5-	Subtraction Property			

Proofs – Example 3

Proof 4:

Given: $\angle 1$ and $\angle 5$ are supplementary; $\angle 3$ and $\angle 5$ are supplementary; Prove: $m \angle 1 = m \angle 3$

Statement	Reason
 ∠ 1 and ∠ 5 are supplementary; ∠ 3 and ∠ 5 are supplementary 	1. Given
2. $m < 1 + m < 5 = 180^{\circ}$ $m < 3 + m < 5 = 180^{\circ}$	 Def. of Supplementary <'s
3. $m \angle 1 + m \angle 5 = m \angle 3 + m \angle 5$ 4. $m < 5 = m < 5$ 5. $m < 1 = m < 3$	 Substitution Property Reflexive Property Subtraction Property