GEOMETRY UNIT 5

Using Congruent Triangles

Using the Postulates

Supply the missing statements and reasons in the following proof. Given: E is the midpoint of $\overline{M J}$

$$
\overline{T E} \perp \overline{M J}
$$

Prove: $\triangle M E T \cong \triangle J E T$

Statements

1. E is the midpoint of $\overline{M J}$
2. $\overline{M E} \cong \overline{E J}$
3. $\overline{T E} \perp \overline{M J}$
4. $<M E T \cong<J E T$
5. $\overline{T E} \cong \overline{T E}$
6. $\triangle M E T \cong \triangle J E T$

Reasons

1. Given
2. Def. of Midpoint
3. Given
4. Def. of Perp. Lines
5. Reflexive
6. SAS Postulate

Using Congruent Triangles

\square Content Objective: Students will be able to use congruent triangles to prove that their corresponding parts are congruent.
\square Language Objective: Students will be able to write up a plan for proving that corresponding parts of congruent triangles are congruent.

Using Congruent Triangles

\square Our goal from the last section was to prove that two triangles are congruent.
\square Our goal in this section is to deduce information about segments or angles once we have shown that they are corresponding parts of congruent triangles.

Example : Complete this Proof

Given: $\overline{A B}$ and $\overline{C D}$ bisect each other at M Prove: $\overline{A D} \| \overline{B C}$

Plan for Proof:

\square You can plan $\overline{A D}$ ll $\overline{B C}$ if you can show that Alt._ Int. angles $<A$ and $<B$ are \cong.
\square You will know that $<A$ and $<B$ are \cong if they are Corresponding Parts of congruent triangles.
\square Thus, the Diagram suggests that you first prove $\underline{\triangle A D M} \cong \triangle B C M$.

Example : Complete this Proof

Statements

Now, on to the proof:

1. $\overline{A B}$ and $\overline{C D}$ bisect each other at M
2. M is the midpoint of $\overline{A B}$ and $\overline{C D}$
3. $\overline{A M} \cong \overline{M B} ; \overline{D M} \cong \overline{M C}$
4. $\angle A M D \cong<B M C$
5. $\triangle A M D \cong \triangle B M C$
6. $<A \cong<B$
7. $\overline{A D} \| \overline{B C}$
8. If 2 lines ACBAT and Alt. Int. <'s are \cong, then the lines are II.

Coming Up with a Plan

\square When trying to prove if two segments or two angles are congruent, follow this strategy.
1.) Identify two triangles in which the two segments or angles are corresponding parts.
2.) Prove that those triangles are congruent.
3.) State the two congruent parts, using the reason

CPCTC

*Extra planning may be needed if you need to prove more things (i.e. lines are parallel, lines are perp., etc.)

Coming up with a Plan: Example A

\square Describe the plan for proving the following
Given: $\overleftrightarrow{P R}$ bisects $<Q P S ; \overline{P Q} \cong \overline{P S}$
Prove: $<Q \cong<S$
1.) $<Q$ is in $\triangle P Q R ;<S$ is in $\triangle P S R$
2.) Prove that $\triangle P Q R \cong \triangle P S R$
3.) State that $<Q \cong<S$ by CPCTC

Coming up with a Plan: Example B

\square Describe the plan for proving the following
Given: $\overline{W X} \cong \overline{Y Z} ; \overline{Z W} \cong \overline{X Y}$ Prove: $\overline{W X}$ Il $\overline{Z Y}$
1.) $\overline{W X}$ is in $\triangle X W Z ; \overline{Y Z}$ is in $\Delta Z Y X$
2.) Prove that $\triangle X W Z \cong \triangle Z Y X$

3.) State that $<1 \cong<2$ or $<3 \cong<4$ by CPCTC
4.) State that $\overline{W X}$ ll $\overline{Z Y}$ because we have Alt. Int. $<^{\prime} \mathbf{s} \cong$

Coming up with a Plan: Example C

\square Describe the plan for proving the following
Given: $\overline{C D} \perp \overline{A B}$;
D is the midpoint of $\overline{A B}$
Prove: $\overline{C A} \cong \overline{C B}$
1.) $\overline{C A}$ is in $\triangle C A D ; \overline{C B}$ is in $\triangle C B D$
2.) Prove that $\triangle C A D \cong \triangle C B D$

3.) State that $\overline{C A} \cong \overline{C B}$ by CPCTC

Exit Ticket:

Complete the Proof

Given: $<P \cong<S$
O is the midpoint of $\overline{P S}$

Prove: O is the midpoint of $\overline{R Q}$

Statements

1. $<P \cong<S$
2. O is the midpoint of $\overline{P S}$
3. $\overline{P O} \cong \overline{O S}$
4. $\angle P O Q \cong<S Q R$
5. $\triangle A M D \cong \triangle B M C$
6. $\overline{Q O} \cong \overline{R O}$
7. O is the midpoint of $\overline{R Q}$

Reasons

1. Given
2. Given
3. Def. of Midpoint
4. Vertical <'s are \cong
5. ASA Postulate
6. CPCTC
7. Def. of Midpoint
